proton conductors
Recently Published Documents


TOTAL DOCUMENTS

484
(FIVE YEARS 93)

H-INDEX

47
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Shitong Wang ◽  
Heng Jiang ◽  
Yanhao Dong ◽  
David Clarkson ◽  
He Zhu ◽  
...  

Proton conduction underlies many important electrochemical technologies. We report a series of new proton electrolytes: acid-in-clay electrolyte termed AiCE, prepared by integrating fast proton carriers in a natural phyllosilicate clay network, that can be made into thin-film (tens of microns) fluid-impervious membranes. The chosen example systems (sepiolite-phosphoric acid) rank top among the solid proton conductors in consideration of proton conductivities (15 mS cm−1 at 25 °C, 0.023 mS cm−1 at −82 °C), the stability window (3.35 V), and reduced chemical activity. A solid-state proton battery was assembled using AiCE as the electrolyte to demonstrate the performance of these electrolytes. Benefitting from the wider electrochemical stability window, reduced corrosivity, and excellent ionic selectivity of AiCE, the two main problems (gasification and cyclability) of proton batteries have been successfully solved. This work also draws the attention of elemental cross-over in proton batteries and illustrates a simple “acid-in-clay” approach to synthesize a series of solid proton electrolytes with a superfast proton permeability, outstanding selectivity, and improved stability for many potential applications associated with protons.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Victoire Lescure ◽  
Morgane Gelin ◽  
Mélanie François ◽  
Mohammad Arab Pour Yazdi ◽  
Pascal Briois ◽  
...  

New advanced fuel cell technologies are moving towards high-temperature proton conductors (HTPCs) to meet environmental issues. Their elaboration remains a challenge and micro-computed tomography (µCT) is an innovative way to control their quality. NiO-BZY anodic supports of a protonic ceramic electrochemical cell (PCEC), elaborated by co-tape casting and co-sintered at 1350 °C, were coated with a BZY20 electrolyte layer by DC magnetron sputtering. The µCT allowed to observe defects inside the volume of these PCEC half-cells and to show their evolution after an annealing treatment at 1000 °C and reduction under hydrogen. This technique consists in obtaining a 3D reconstruction of all the cross-sectional images of the whole sample, slice by slice. This allows seeing inside the sample at any desired depth. The resolution of 0.35 µm is perfectly adapted to this type of problem considering the thickness of the different layers of the sample and the size of the defects. Defects were detected, and their interpretation was possible thanks to the 3D view, such as the phenomenon of NiO grain enlargement explaining defects in the electrolyte, the effect of NiO reduction, and finally, some anomalies due to the shaping process. Ways to anticipate these defects were then proposed.


2022 ◽  
pp. 139844
Author(s):  
Xinpei Li ◽  
Linkun Cai ◽  
Mu Li ◽  
Mingxin Zhang ◽  
Qianjie Zhou ◽  
...  

2022 ◽  
Vol 451 ◽  
pp. 214241
Author(s):  
Shan-Shan Liu ◽  
Qing-Qing Liu ◽  
Sheng-Zheng Huang ◽  
Chong Zhang ◽  
Xi-Yan Dong ◽  
...  

2022 ◽  
Vol 2155 (1) ◽  
pp. 012002
Author(s):  
I V Khromushin ◽  
T I Aksenova ◽  
S B Kislitsin

Abstract The effect of irradiation with low-energy Ar ions on the structure and conducting properties of lanthanum scandate synthesized by acceptor doping and creation of a lanthanum deficit has been studied.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 114
Author(s):  
Nataliia Tarasova ◽  
Irina Animitsa

In this paper, the review of the new class of ionic conductors was made. For the last several years, the layered perovskites with Ruddlesden-Popper structure AIILnInO4 attracted attention from the point of view of possibility of the realization of ionic transport. The materials based on Ba(Sr)La(Nd)InO4 and the various doped compositions were investigated as oxygen-ion and proton conductors. It was found that doped and undoped layered perovskites BaNdInO4, SrLaInO4, and BaLaInO4 demonstrate mixed hole-ionic nature of conductivity in dry air. Acceptor and donor doping leads to a significant increase (up to ~1.5–2 orders of magnitude) of conductivity. One of the most conductive compositions BaNd0.9Ca0.1InO3.95 demonstrates the conductivity value of 5∙10−4 S/cm at 500 °C under dry air. The proton conductivity is realized under humid air at low (<500 °C) temperatures. The highest values of proton conductivity are attributed to the compositions BaNd0.9Ca0.1InO3.95 and Ba1.1La0.9InO3.95 (7.6∙10−6 and 3.2∙10−6 S/cm correspondingly at the 350 °C under wet air). The proton concentration is not correlated with the concentration of oxygen defects in the structure and it increases with an increase in the unit cell volume. The highest proton conductivity (with 95−98% of proton transport below 400 °C) for the materials based on BaLaInO4 was demonstrated by the compositions with dopant content no more that 0.1 mol. The layered perovskites AIILnInO4 are novel and prospective class of functional materials which can be used in the different electrochemical devices in the near future.


Author(s):  
Yevgeniy Ostrovskiy ◽  
Yi-Lin Huang ◽  
Christopher Pellegrinelli ◽  
Mohammed Hussain Abdul Jabbar ◽  
Mann Sakbodin ◽  
...  

Abstract Protonic conductors are gaining use in solid oxide fuel cells (SOFCs) and electrolysis cells (SOECs) as well as for H2 separation membranes. However, for SOFC/SOEC electrode and membrane applications their performance is limited by low electronic conductivity. One of the most promising classes of ceramic proton conductors, perovskites, have highly-tunable compositions allowing for the optimization of both ionic and electronic conductivity. In this work Pr-doped SrCeO3 was studied over a wide range of oxygen partial pressures (pO2’s) and temperatures to determine its defect properties and conductivity. Under reducing conditions Pr-doped SrCeO3 was found to be chemically and structurally stable, with an optimal Pr doping level of 10%. This composition shows greater conductivity compared to previously reported Eu-doped SrCeO3. Under low pO2 Pr-doped SrCeO3 exhibited n-type behavior as conductivity increased with decreasing pO2, suggesting that the electronic conductivity of SrCeO3 is significantly enhanced by Pr doping. Under high pO2 conditions, Pr-doped SrCeO3 exhibited p-type conductivity with higher conductivity in the presence of water affirming its protonic conductivity. This work validates the use of Pr as a means of enhancing electronic conductivity in proton conducting perovskites.


2021 ◽  
Vol 11 (24) ◽  
pp. 11877
Author(s):  
Olga Yu. Kurapova ◽  
Pedro M. Faia ◽  
Artem A. Zaripov ◽  
Vasily V. Pazheltsev ◽  
Artem A. Glukharev ◽  
...  

The development of novel proton-conducting membrane materials for electrochemical power units, i.e., low temperature fuel cells (FCs), efficiently working up to 300 °C, is a critical problem related to the rapid shift to hydrogen energy. Polyantimonic acid (PAA) is characterized by high conductivity, sufficient thermal stability and can be regarded as a prospective proton-conducting material. However, the fabrication of bulk PAA-based membranes with high proton conductivity remains a challenging task. In the present work, for the first time, the authors report the investigation on proton conductivity of bulk PAA-based membranes in the temperature range 25–250 °C, both in dry air and in moisturized air. Using PAA powder and fluoroplastic as a binder, fully dense cylindrical membranes were formed by cold uniaxial pressing. The structures of the PAA-based membranes were investigated by SEM, EDX, XRD and Raman techniques. STA coupled with in situ thermo-XRD analysis revealed that the obtained membranes corresponded with Sb2O5·3H2O with pyrochlore structure, and that no phase transitions took place up to 330 °C. PAA-based membranes possess a high-grain component of conductivity, 5 × 10−2 S/cm. Grain boundary conductivities of 90PAA and 80PAA membranes increase with relative humidity content and their values change non-linearly in the range 25–250 °C.


2021 ◽  
Author(s):  
Matouš Kloda ◽  
Tomáš Plecháček ◽  
Soňa Ondrušová ◽  
Petr Brázda ◽  
Petr Chalupský ◽  
...  

Metal organic frameworks (MOFs) are attracting attention as potential proton conductors. There are two main advantages of MOFs in this application: the possibility of rational design and tuning of the properties, and clear conduction pathways given by their crystalline structure. We hereby present two new MOF structures, ICR-10 and ICR-11, based on tetratopic phosphinate ligands. The structures of both MOFs were determined by 3D electron diffraction. They both crystallize in the P-3 space group and contain arrays of parallel linear pores lined with hydrophilic non-coordinated phosphinate groups. This, together with the adsorbed water molecules, facilitates proton transfer via the Grotthuss mechanism, leading to the proton conductivity up to 4.26∙10-4 S cm-1 for ICR-11.


Sign in / Sign up

Export Citation Format

Share Document