Role of Pyridinium Groups and Iodide Ions in Photoelectrochromism in Viologen-Based Ion-Pair Charge-Transfer Complexes: Molecular Orbital Analysis

2018 ◽  
Vol 122 (8) ◽  
pp. 4546-4556 ◽  
Author(s):  
Yuuichi Orimoto ◽  
Kosuke Ishimoto ◽  
Yuriko Aoki
1974 ◽  
Vol 52 (22) ◽  
pp. 3787-3792 ◽  
Author(s):  
Saul Wolfe ◽  
H. Bernhard Schlegel ◽  
Myung-Hwan Whangbo ◽  
Fernando Bernardi

A perturbational molecular orbital analysis has been performed of the strengths of the CH bonds of methylamine and methanol in their staggered conformations. This analysis leads to the prediction that a CH bond anti-coplanar to a directed lone pair is stronger than a gauche CH bond, and is in disagreement with experimental observation. The origin of the disagreement is to be found in the underestimation of the role of the nuclear–nuclear contribution to the bond strengths. Abinitio computation of the gauche and anti stretching force constants of methylamine provides quantitative theoretical support for the view that these differ because of a nuclear-dominated effect. It is suggested that effects, analogous to those observed in the Bohlmann bands, may be seen even in the absence of nonbonded electron pairs.


Author(s):  
Reihaneh Heidarian ◽  
Mansoureh Zahedi-Tabrizi

: Leflunomide (LFM) and its active metabolite, teriflunomide (TFM), have drawn a lot of attention for their anticancer activities, treatment of rheumatoid arthritis and malaria due to their capability to inhibit dihydroorotate dehydrogenase (DHODH) and Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. In this investigation, the strength of intramolecular hydrogen bond (IHB) in five analogs of TFM (ATFM) has been analyzed employing density functional theory (DFT) using B3LYP/6-311++G (d, p) level and molecular orbital analysis in the gas phase and water solution. A detailed electronic structure study has been performed using the quantum theory of atoms in molecules (QTAIM) and the hydrogen bond energies (EHB) of stable conformer obtained in the range of 76-97 kJ/mol, as a medium hydrogen bond. The effect of substitution on the IHB nature has been studied by natural bond orbital analysis (NBO). 1H NMR calculations show an upward trend in the proton chemical shift of the enolic proton in the chelated ring (14.5 to 15.7ppm) by increasing the IHB strength. All the calculations confirmed the strongest IHB in 5-F-ATFM and the weakest IHB in 2-F-ATFM. Molecular orbital analysis, including the HOMO-LUMO gap and chemical hardness, was performed to compare the reactivity of inhibitors. Finally, molecular docking analysis was carried out to identify the potency of inhibition of these compounds against PfDHODH enzyme.


1978 ◽  
Vol 33 (8) ◽  
pp. 959-963 ◽  
Author(s):  
Fernando Bernardi ◽  
Andrea Bottoni ◽  
Francesco Paolo Colonna ◽  
Giuseppe Distefano ◽  
Ugo Folli ◽  
...  

The ultraviolet photoelectron spectra of [2,2](2,5)furanophane (FUPH) and [2,2](2,5)thiophenophane (THPH) have been analyzed on the basis of a perturbational molecular orbital analysis, by comparison with CNDO/2 computations and by correlating them with the spectra of related molecules. Through space and through bond interactions between the two heteroaromatic rings are shown to be important in determining the ordering of the outermost MO’s in this class of compounds.


2012 ◽  
Vol 550-553 ◽  
pp. 57-61
Author(s):  
Hao Li ◽  
Yong Hong Deng ◽  
Kai Huang

Alkali lignin (AL) was used as a polyanion to form layer-by-layer self-assembled film with PDAC as a polycation. The effects of temperature and concentration on the adsorption characteristics of AL were investigated. Iodine was added into AL solutions to study the role of π-π interaction in self-assembly of AL and PDAC. Results show that the self-assembly of AL/PDAC is mainly driven by π-π interaction and electrostatic interaction. A higher temperature or a larger concentration can enhance the aggregation of lignin. I2 can form lignin–iodine charge–transfer complexes with AL to reduce the degree of aggregation of AL, so the adsorbed amount of AL decreases significantly with increasing iodine contents.


Author(s):  
Toshiaki Enoki ◽  
Morinobu Endo ◽  
Masatsugu Suzuki

There are two important features in the structure and electronic properties of graphite: a two-dimensional (2D) layered structure and an amphoteric feature (Kelly, 1981). The basic unit of graphite, called graphene is an extreme state of condensed aromatic hydrocarbons with an infinite in-plane dimension, in which an infinite number of benzene hexagon rings are condensed to form a rigid planar sheet, as shown in Figure 1.1. In a graphene sheet, π-electrons form a 2D extended electronic structure. The top of the HOMO (highest occupied molecular orbital) level featured by the bonding π-band touches the bottom of the LUMO (lowest unoccupied molecular orbital) level featured by the π*-antibonding band at the Fermi energy EF, the zero-gap semiconductor state being stabilized as shown in Figure 1.2a. The AB stacking of graphene sheets gives graphite, as shown in Figure 1.3, in which the weak inter-sheet interaction modifies the electronic structure into a semimetallic one having a quasi-2D nature, as shown in Figure 1.2b. Graphite thus features a 2D system from both structural and electronic aspects. The amphoteric feature is characterized by the fact that graphite works not only as an oxidizer but also as a reducer in chemical reactions. This characteristic stems from the zero-gap-semiconductor-type or semimetallic electronic structure, in which the ionization potential and the electron affinity have the same value of 4.6 eV (Kelly, 1981). Here, the ionization potential is defined as the energy required when we take one electron from the top of the bonding π-band to the vacuum level, while the electron affinity is defined as the energy produced by taking an electron from the vacuum level to the bottom of the anti-bonding π*-band. The amphoteric character gives graphite (or graphene) a unique property in the charge transfer reaction with a variety of materials: namely, not only an electron donor but also an electron acceptor gives charge transfer complexes with graphite, as shown in the following reactions: . . .xC + D → D+ C+x. . . . . .(1.1). . . . . .xC + A → C+x A−. . . . . .(1.2). . . where C, D, and A are graphite, donor, and acceptor, respectively.


Sign in / Sign up

Export Citation Format

Share Document