Extending the Time Scales of Nonadiabatic Molecular Dynamics via Machine Learning in the Time Domain

Author(s):  
Alexey V. Akimov
2018 ◽  
Vol 211 ◽  
pp. 17009
Author(s):  
Natalia Espinoza Sepulveda ◽  
Jyoti Sinha

The development of technologies for the maintenance industry has taken an important role to meet the demanding challenges. One of the important challenges is to predict the defects, if any, in machines as early as possible to manage the machines downtime. The vibration-based condition monitoring (VCM) is well-known for this purpose but requires the human experience and expertise. The machine learning models using the intelligent systems and pattern recognition seem to be the future avenue for machine fault detection without the human expertise. Several such studies are published in the literature. This paper is also on the machine learning model for the different machine faults classification and detection. Here the time domain and frequency domain features derived from the measured machine vibration data are used separated in the development of the machine learning models using the artificial neutral network method. The effectiveness of both the time and frequency domain features based models are compared when they are applied to an experimental rig. The paper presents the proposed machine learning models and their performance in terms of the observations and results.


2003 ◽  
Vol 214 ◽  
pp. 339-340
Author(s):  
Rongfeng Shen ◽  
Liming Song

We determine the characteristic variability time scales for 410 bright long GRBs by locating the maximums of their Power Density Spectra (PDSs) defined and calculated in the time domain. The averaged characteristic variability time scale decreases with peak fluxe. This is consistent with the time dilation effect expected by cosmological origin of GRBs. The occurrence distribution of the characteristic variability time scale shows bimodality, which might be interpreted as that the long GRB sample is composed of two sub-classes with different intrinsic characteristic variability time scales.


2011 ◽  
Vol 7 (S285) ◽  
pp. 318-320
Author(s):  
Matthew J. Graham ◽  
S. G. Djorgovski ◽  
Andrew Drake ◽  
Ashish Mahabal ◽  
Roy Williams ◽  
...  

AbstractThe time-domain community wants robust and reliable tools to enable the production of, and subscription to, community-endorsed event notification packets (VOEvent). The Virtual Astronomical Observatory (VAO) Transient Facility (VTF) is being designed to be the premier brokering service for the community, both collecting and disseminating observations about time-critical astronomical transients but also supporting annotations and the application of intelligent machine-learning to those observations. Two types of activity associated with the facility can therefore be distinguished: core infrastructure, and user services. We review the prior art in both areas, and describe the planned capabilities of the VTF. In particular, we focus on scalability and quality-of-service issues required by the next generation of sky surveys such as LSST and SKA.


MENDEL ◽  
2018 ◽  
Vol 24 (2) ◽  
Author(s):  
Daniel Zuth ◽  
Tomas Marada

The article deals with the possibility of using machine learning in vibrodiagnostics to determine the type of fault of rotating machine. The data source is real measured data from the vibrodiagnostic model. This model allows simulation of some types of faults. The data is then processed and reduced for the use of the Matlab Classication learner app, which creates a model for recognizing faults. The model is ultimately tested on new samples of data. The aim of the article is to verify the ability to recognize similarly rotary machine faults from real measurements in the time domain.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ziyuan Jiang ◽  
Qinkai Han ◽  
Xueping Xu

Planetary gearbox is one of the most widely used core parts in heavy machinery. Once it breaks down, it can lead to serious accidents and economic loss. Induction motor current signal analysis (MCSA) is a noninvasive method that uses current to detect faults. Currently, most MCSA-based fault diagnosis studies focus on the parallel shaft gearbox. However, there is a paucity of studies on the planetary gearbox. The effect of various signal processing methods on motor current and the performance of different machine learning models are rarely compared. Therefore, fault diagnosis of planetary gearbox based MCSA is conducted in this study. First, the effects of various faults on motor currents are studied. Specifically, the characteristic frequencies of a fault in sun/planet/ring gears and supporting bearings of the planetary gearbox are derived. Then, a signal preprocessing method, namely, singular spectrum analysis (SSA), is proposed to remove the supply frequency component in the current signal. Subsequently, four classical machine learning models, including the support vector machine (SVM), decision tree (DT), random forest (RF), and AdaBoost, are used for fault classifications based on the features extracted via principal component analysis (PCA). The convolutional neural network (CNN), which can automatically extract features, is also adopted. The dynamic experiment of the planetary gearbox with seven types of faults, including tooth chipping in sun/planet/ring gears, inner race spall in planet bearing, inner/outer races, and ball spalls in input support bearing, is conducted. Raw current signal in the time domain, reconstructed signal by SSA, and the current spectra in the frequency domain are used as the inputs of various models. The classification results show that the PCA-SVM is the best model for learned data while CNN is the best model for unlearned data on average. Furthermore, SSA mainly increases the accuracy of CNN in the time domain and exhibits a positive effect on unlearned data in the time domain. The classification accuracy increases significantly after transforming the time domain current data to the frequency domain.


Sign in / Sign up

Export Citation Format

Share Document