Simultaneous Measurement of Single-Cell Mechanics and Cell-to-Materials Adhesion Using Fluidic Force Microscopy

Langmuir ◽  
2022 ◽  
Author(s):  
Ma Luo ◽  
Wenjian Yang ◽  
Tyrell N. Cartwright ◽  
Jonathan M. G. Higgins ◽  
Jinju Chen
Langmuir ◽  
2006 ◽  
Vol 22 (19) ◽  
pp. 8151-8155 ◽  
Author(s):  
Valentin Lulevich ◽  
Tiffany Zink ◽  
Huan-Yuan Chen ◽  
Fu-Tong Liu ◽  
Gang-yu Liu

2005 ◽  
Vol 09 (14) ◽  
pp. 674-675 ◽  
Author(s):  
Teck Chwee Lim

The article is about single cell mechanics and its connection to human diseases. It touches on the biomechanics used to perform quantitative study in the physical properties of cells with the progression of certain diseases such as malaria, sickle cell anemia and cancer.


2020 ◽  
Author(s):  
Angelo Gaitas ◽  
Francesca Stillitano ◽  
Irene Turnbull

AbstractCardiomyocytes iPSC (iPSC-CMs) have great potential for cell therapy, drug assessment, and for understanding the pathophysiology and genetic underpinnings of cardiac diseases. Contraction forces are one of the most important characteristics of cardiac function and are predictors of healthy and diseased states. Cantilever techniques, such as atomic force microscopy, measure the vertical force of a single cell, while systems designed to more closely resemble the physical heart function, such as cardiac tissue on posts, measure the axial force. One important question is how do these two force measurements correlate? By establishing a correlation of the axial and vertical force we will be one step closer in being able to use single cell iPSC instead of more elaborate human engineered tissue or animal heart tissue as models. A novel micromachined sensor for measuring force contractions of artificial tissue has been developed. Using this novel sensor a correlation between axial force and vertical force is experimentally established. This finding supports the use of vertical measurements as an alternative to tissue measurements.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuri M. Efremov ◽  
Svetlana L. Kotova ◽  
Anastasia A. Akovantseva ◽  
Peter S. Timashev

Abstract Background The nucleus, besides its functions in the gene maintenance and regulation, plays a significant role in the cell mechanosensitivity and mechanotransduction. It is the largest cellular organelle that is often considered as the stiffest cell part as well. Interestingly, the previous studies have revealed that the nucleus might be dispensable for some of the cell properties, like polarization and 1D and 2D migration. Here, we studied how the nanomechanical properties of cells, as measured using nanomechanical mapping by atomic force microscopy (AFM), were affected by the removal of the nucleus. Methods The mass enucleation procedure was employed to obtain cytoplasts (enucleated cells) and nucleoplasts (nuclei surrounded by plasma membrane) of two cell lines, REF52 fibroblasts and HT1080 fibrosarcoma cells. High-resolution viscoelastic mapping by AFM was performed to compare the mechanical properties of normal cells, cytoplasts, and nucleoplast. The absence or presence of the nucleus was confirmed with fluorescence microscopy, and the actin cytoskeleton structure was assessed with confocal microscopy. Results Surprisingly, we did not find the softening of cytoplasts relative to normal cells, and even some degree of stiffening was discovered. Nucleoplasts, as well as the nuclei isolated from cells using a detergent, were substantially softer than both the cytoplasts and normal cells. Conclusions The cell can maintain its mechanical properties without the nucleus. Together, the obtained data indicate the dominating role of the actomyosin cytoskeleton over the nucleus in the cell mechanics at small deformations inflicted by AFM.


Soft Matter ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. 1776-1784 ◽  
Author(s):  
Bryant L. Doss ◽  
Kiarash Rahmani Eliato ◽  
Keng-hui Lin ◽  
Robert Ros

Atomic force microscopy (AFM) is becoming an increasingly popular method for studying cell mechanics, however the existing analysis tools for determining the elastic modulus from indentation experiments are unable to quantitatively account for mechanical heterogeneity commonly found in biological samples.


Scanning ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamed Yassine Amarouch ◽  
Jaouad El Hilaly ◽  
Driss Mazouzi

Atomic force microscopy (AFM) is a widely used imaging technique in material sciences. After becoming a standard surface-imaging tool, AFM has been proven to be useful in addressing several biological issues such as the characterization of cell organelles, quantification of DNA-protein interactions, cell adhesion forces, and electromechanical properties of living cells. AFM technique has undergone many successful improvements since its invention, including fluidic force microscopy (FluidFM), which combines conventional AFM with microchanneled cantilevers for local liquid dispensing. This technology permitted to overcome challenges linked to single-cell analyses. Indeed, FluidFM allows isolation and injection of single cells, force-controlled patch clamping of beating cardiac cells, serial weighting of micro-objects, and single-cell extraction for molecular analyses. This work aims to review the recent studies of AFM implementation in molecular and cellular biology.


2017 ◽  
Vol 10 (2) ◽  
pp. e1407 ◽  
Author(s):  
Vijay Rajagopal ◽  
William R. Holmes ◽  
Peter Vee Sin Lee

2016 ◽  
Vol 138 (36) ◽  
pp. 11664-11671 ◽  
Author(s):  
Hyunseo Koo ◽  
Ikbum Park ◽  
Yoonhee Lee ◽  
Hyun Jin Kim ◽  
Jung Hoon Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document