Revisiting Nonlinear Flow Behavior of Rouse Chain: Roles of FENE, Friction-Reduction, and Brownian Force Intensity Variation

2021 ◽  
Author(s):  
Hiroshi Watanabe ◽  
Yumi Matsumiya ◽  
Takeshi Sato
2019 ◽  
Vol 131 (3) ◽  
pp. 957-983 ◽  
Author(s):  
J. H. van Lopik ◽  
L. Zazai ◽  
N. Hartog ◽  
R. J. Schotting

AbstractUnder certain flow conditions, fluid flow through porous media starts to deviate from the linear relationship between flow rate and hydraulic gradient. At such flow conditions, Darcy’s law for laminar flow can no longer be assumed and nonlinear relationships are required to predict flow in the Forchheimer regime. To date, most of the nonlinear flow behavior data is obtained from flow experiments on packed beds of uniformly graded granular materials (Cu = d60/d10 < 2) with various average grain sizes, ranging from sands to cobbles. However, natural deposits of sand and gravel in the subsurface could have a wide variety of grain size distributions. Therefore, in the present study we investigated the impact of variable grain size distributions on the extent of nonlinear flow behavior through 18 different packed beds of natural sand and gravel deposits, as well as composite filter sand and gravel mixtures within the investigated range of uniformity (2.0 < Cu < 17.35) and porosity values (0.23 < n < 0.36). Increased flow resistance is observed for the sand and gravel with high Cu values and low porosity values. The present study shows that for granular material with wider grain size distributions (Cu > 2), the d10 instead of the average grain size (d50) as characteristic pore length should be used. Ergun constants A and B with values of 63.1 and 1.72, respectively, resulted in a reasonable prediction of the Forchheimer coefficients for the investigated granular materials.


2018 ◽  
Vol 102 ◽  
pp. 179-195 ◽  
Author(s):  
Feng Xiong ◽  
Qinghui Jiang ◽  
Zuyang Ye ◽  
Xiaobo Zhang

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yuhao Jin ◽  
Lijun Han ◽  
Changyu Xu ◽  
Qingbin Meng ◽  
Zhenjun Liu ◽  
...  

This research experimentally studied the effects of various fracture roughness (characterized by the fractal dimension D) and normal stress (normal loads FN) applied to fracture on ultrafine cement grout nonlinear flow behavior through rough-walled plexiglass fractured sample. A high-precision and effective sealing self-made apparatus was developed to perform the stress-dependent grout flow tests on the plexiglass sample containing rough-walled fracture (fracture apertures of arbitrary variation were created by high-strength springs and normal loads according to design requirements). The real-time data acquisition equipment and high-precision self-made electronic balance were developed to collect the real-time grouting pressure P and volumetric flow rate Q, respectively. At each D, the grouting pressure P ranged from 0 to 0.9 MPa, and the normal loads FN varied from 1124.3 to 1467.8 N. The experimental results show that (i) the Forchheimer equation was fitted very well to the results of grout nonlinear flow through rough-walled fractures. Besides, both nonlinear coefficient (a) and linear coefficient (b) in Forchheimer’s equation increased with increase of D and FN, and the larger the FN was, the larger the amplitude was. (ii) For normalized transmissivity, with the increase of Re, the decline of the T/T0−β curves mainly went through three stages: viscous regime, weak inertia regime, and finally strong inertia regime. For a certain D, as the normal load FN increased, the T/T0−β curves generally shifted downward, which shows good agreement with the single-phase flow test results conducted by Zimmerman. Moreover, with the increase of D, the Forchheimer coefficient β decreased. However, within smaller FN, β decreased gradually with increasing D and eventually approached constant values. (iii) At a given FN, Jc increased with increasing D.


Sign in / Sign up

Export Citation Format

Share Document