Effect of Block Copolymer Composition and Homopolymer Molecular Weight on Ordered Bicontinuous Double-Diamond Structures in Binary Blends of Polystyrene–Polyisoprene Block Copolymer and Polyisoprene Homopolymer

2021 ◽  
Author(s):  
Hideaki Takagi ◽  
Katsuhiro Yamamoto
1991 ◽  
Vol 248 ◽  
Author(s):  
Karen I. Winey

AbstractBinary blends of diblock copolymer (AB) and homopolymer (hA) self assemble upon solvent evaporation into a great variety of microphase separated morphologies. The ordered lamellar, bicontinuous double diamond, cylindrical and spherical morphologies were observed by TEM and SAXS in our studies, as well as a range of micellar morphologies.The mean curvature (H) and the area per copolymer junction (σj), which characterize the intermaterial dividing surface, increased with increasing homopolymer concentration in the blend and/or with decreasing homopolymer molecular weight. These trends were generally obeyed both between and within ordered morphology types. The increase in H and σj was related to an increased degree of mixing between the homopolymer and the block of the copolymer.Two types of isothermal morphology diagrams were constructed to consolidate the extensive morphological data and to illustrate the general morphological transitions in AB/hA blends. The constant molecular weight morphology diagrams illustrated the interdependence of the copolymer composition and the homopolymer concentration. The constant copolymer composition diagrams emphasized the importance of the relative homopolymer molecular weight and the overall blend composition.


Author(s):  
Edwin L. Thomas ◽  
Karen I. Winey

A wide range of morphologies and thereby physical properties can be achieved in block copolymer/homopolymer blends by varying the copolymer composition, copolymer concentration and molecular weights. Recently we investigated micelle shape transitions in diblock copolymer with homopolymer blends at low copolymer concentration. In this paper we study the microstructure over a wider concentration range for a polystyrene-polybutadiene (PS/PB) diblock copolymer of molecular weight 20.5 × 103/20.5 × 103 blended with 17.2 × 103 molecular weight homopolystyrene (hPS).Figure 1 shows schematically a possible spectrum of microdomain structures dependent on the copolymer concentration of a lamellar PS/PB and hPS. Below the critical micelle concentration (CMC) the block copolymer is molecularly dispersed in the homopolymer exhibiting a homogeneous phase. As diblock concentration increases the minority (i.e. PB) forms spherical and/or cylindrical micelles randomly dispersed in the hPS. Further increases in diblock concentration induces long range ordering of various microdomains. In addition three biphasic regions are proposed in which two phases coexist: isotropic cylinders with ordered cylinders, ordered cylinders with ordered bicontinuous double diamond (OBDD), and OBDD with swollen lamellae.


1989 ◽  
Vol 171 ◽  
Author(s):  
Karen I. Winey ◽  
Edwin L. Thomas

ABSTRACTWe report the observation of the ordered bicontinuous double diamond (OBDD) structure in binary blends of poly(styrene-isoprene) diblock copolymer and homopolystyrene. The overall polystyrene volume fraction range is 64 - 67 PSvol% for the OBDD structure in binary blends of a lamellar diblock (SI 27/22) and a homopolymer (14.0 hPS). This composition range is approximately within the polystyrene volume fraction range established for pure diblock copolymers in the strong segregation regime having the OBDD structure. Ordered lamellae are observed at approximately 65 PSvol% when the homopolystyrene molecular weight is greater than the molecular weight of the polystyrene block of the copolymer. This observation is discussed in terms of the decreased degree of mixing between the homopolymer and the corresponding block and the resultant effect on the interfacial curvature.


1965 ◽  
Vol 38 (2) ◽  
pp. 431-449
Author(s):  
Eugene P. Goldberg

Abstract Polycarbonate block copolymers were prepared by phosgenating pyridine solutions of polyether glycol-bisphenol-A mixtures. Copolycarbonates derived from poly(oxyethylene) glycols (Carbowaxes) were studied in detail for property-structure effects as a function of glycol molecular weight (1000–20,000) and copolymer composition (5–70 weight per cent or 0.3–10.0 mole per cent of a 4000 molecular weight glycol). Remarkable strength (>7000 psi) and snappy elasticity (>90 per cent immediate recovery) were observed at poly(oxyethylene) block concentrations greater than 3 mole per cent. These thermoplastic elastomers also exhibited high softening temperatures (>180° C) and tensile elongations up to about 700 per cent. Both Tg and softening temperature varied linearly with comonomer mole ratio over the composition range studied, with Tg displaying much greater polyether concentration sensitivity. It is suggested that the observed property effects result to a large extent from the variation in poly(bisphenol-A carbonate) block length that accompanies the changing of copolymer composition. An initial increase in flexural modulus (stiffness) was observed at low polyether concentrations (0–1 mole per cent). This phenomenon is considered to be related to similar modulus effects found in plasticized rigid thermoplastics at low plasticizer concentrations. A moderate degree of molecular order, due to bisphenol carbonate segments rather than the normally crystalline polyether, was detected by x-ray analysis. Elastomeric carbonate-carboxylate tetrapolymers were also prepared by partial replacement of carbonate with isophthalate, terephthalate or adipate linkages in polyether-bisphenol systems. The dramatic softening temperature depression observed in this class of polymers is attributed to the disruption of long bisphenol carbonate block sequences that exist in the simpler polyether glycol-bisphenol carbonate copolymers.


2012 ◽  
Vol 466-467 ◽  
pp. 405-410 ◽  
Author(s):  
Z.H. Li ◽  
Ji Min Wu ◽  
Y.L. Zhao ◽  
J. Guan ◽  
S.J. Huang ◽  
...  

The present investigation was aimed at optimization of BMPs loaded PLGA microspheres formulations resulting in improved encapsulation efficiency and sustained release of BMPs by varying the molecular weight and copolymer composition of PLGA. Double-emulsion solvent evaporation method was used to prepare the microspheres. The effect of polymer molecular weight and copolymer composition on particle properties and release behavior in vitro was reported. The particle size and encapsulation efficiency increased with increase in molecular weight and lactide content of PLGA. While BMPs release in vitro decreased with increase in molecular weight and lactide content of PLGA. SEM pictures revealed that almost all microspheres were spherical but internal morphology was different. The morphology of PLGA microspheres with exorbitant molecular weight(100kD) was anomalistic whereas the morphology of PLGA microspheres with higher glycolide content(50) have porous structures.


Sign in / Sign up

Export Citation Format

Share Document