Morphologies in Blends of Diblock Copolymer and Homopolymer: Morphology Diagrams and the Intermaterial Dividing Surface

1991 ◽  
Vol 248 ◽  
Author(s):  
Karen I. Winey

AbstractBinary blends of diblock copolymer (AB) and homopolymer (hA) self assemble upon solvent evaporation into a great variety of microphase separated morphologies. The ordered lamellar, bicontinuous double diamond, cylindrical and spherical morphologies were observed by TEM and SAXS in our studies, as well as a range of micellar morphologies.The mean curvature (H) and the area per copolymer junction (σj), which characterize the intermaterial dividing surface, increased with increasing homopolymer concentration in the blend and/or with decreasing homopolymer molecular weight. These trends were generally obeyed both between and within ordered morphology types. The increase in H and σj was related to an increased degree of mixing between the homopolymer and the block of the copolymer.Two types of isothermal morphology diagrams were constructed to consolidate the extensive morphological data and to illustrate the general morphological transitions in AB/hA blends. The constant molecular weight morphology diagrams illustrated the interdependence of the copolymer composition and the homopolymer concentration. The constant copolymer composition diagrams emphasized the importance of the relative homopolymer molecular weight and the overall blend composition.

1989 ◽  
Vol 171 ◽  
Author(s):  
Karen I. Winey ◽  
Edwin L. Thomas

ABSTRACTWe report the observation of the ordered bicontinuous double diamond (OBDD) structure in binary blends of poly(styrene-isoprene) diblock copolymer and homopolystyrene. The overall polystyrene volume fraction range is 64 - 67 PSvol% for the OBDD structure in binary blends of a lamellar diblock (SI 27/22) and a homopolymer (14.0 hPS). This composition range is approximately within the polystyrene volume fraction range established for pure diblock copolymers in the strong segregation regime having the OBDD structure. Ordered lamellae are observed at approximately 65 PSvol% when the homopolystyrene molecular weight is greater than the molecular weight of the polystyrene block of the copolymer. This observation is discussed in terms of the decreased degree of mixing between the homopolymer and the corresponding block and the resultant effect on the interfacial curvature.


Author(s):  
Edwin L. Thomas ◽  
Karen I. Winey

A wide range of morphologies and thereby physical properties can be achieved in block copolymer/homopolymer blends by varying the copolymer composition, copolymer concentration and molecular weights. Recently we investigated micelle shape transitions in diblock copolymer with homopolymer blends at low copolymer concentration. In this paper we study the microstructure over a wider concentration range for a polystyrene-polybutadiene (PS/PB) diblock copolymer of molecular weight 20.5 × 103/20.5 × 103 blended with 17.2 × 103 molecular weight homopolystyrene (hPS).Figure 1 shows schematically a possible spectrum of microdomain structures dependent on the copolymer concentration of a lamellar PS/PB and hPS. Below the critical micelle concentration (CMC) the block copolymer is molecularly dispersed in the homopolymer exhibiting a homogeneous phase. As diblock concentration increases the minority (i.e. PB) forms spherical and/or cylindrical micelles randomly dispersed in the hPS. Further increases in diblock concentration induces long range ordering of various microdomains. In addition three biphasic regions are proposed in which two phases coexist: isotropic cylinders with ordered cylinders, ordered cylinders with ordered bicontinuous double diamond (OBDD), and OBDD with swollen lamellae.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Dong Chen ◽  
Ruixue Liu ◽  
Zhifeng Fu ◽  
Yan Shi

AbstractAmphiphilic diblock copolymer poly(methyl methacrylate)-b-poly(acrylic acid) (PMMA-b-PAA) was prepared by 1,1-diphenylethene (DPE) method. Firstly, free radical polymerization of methyl methacrylate was carried out with AIBN as initiator in the presence of DPE, giving a DPE-containing PMMA precursor with controlled molecular weight. tert-Butyl acrylate (tBA) was then polymerized in the presence of the PMMA precursor, and PMMA-b-PtBA diblock copolymer with controlled molecular weight was prepared. Finally, amphiphilic diblock copolymer PMMA-b-PAA was obtained by hydrolysis of PMMA-b-PtBA. The formation of PMMA-b-PAA was confirmed by 1H NMR spectrum and gel permeation chromatography. Transmission electron microscopy and dynamic light scattering were used to detect the self-assembly behavior of the amphiphilic diblock polymers in methanol.


1991 ◽  
Vol 24 (23) ◽  
pp. 6182-6188 ◽  
Author(s):  
Karen I. Winey ◽  
Edwin L. Thomas ◽  
Lewis J. Fetters

Sign in / Sign up

Export Citation Format

Share Document