scholarly journals Ferroelectric Domain Walls in PbTiO3 Are Effective Regulators of Heat Flow at Room Temperature

Nano Letters ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 7901-7907 ◽  
Author(s):  
Eric Langenberg ◽  
Dipanjan Saha ◽  
Megan E. Holtz ◽  
Jian-Jun Wang ◽  
David Bugallo ◽  
...  
2015 ◽  
Vol 107 (14) ◽  
pp. 142903 ◽  
Author(s):  
Mahamudu Mtebwa ◽  
Ludwig Feigl ◽  
Petr Yudin ◽  
Leo J. McGilly ◽  
Konstantin Shapovalov ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 804
Author(s):  
Thomas Kämpfe ◽  
Bo Wang ◽  
Alexander Haußmann ◽  
Long-Qing Chen ◽  
Lukas M. Eng

Ferroelectric domain wall conductance is a rapidly growing field. Thin-film lithium niobate, as in lithium niobate on insulators (LNOI), appears to be an ideal template, which is tuned by the inclination of the domain wall. Thus, the precise tuning of domain wall inclination with the applied voltage can be used in non-volatile memories, which store more than binary information. In this study, we present the realization of this concept for non-volatile memories. We obtain remarkably stable set voltages by the ferroelectric nature of the device as well as a very large increase in the conduction, by at least five orders of magnitude at room temperature. Furthermore, the device conductance can be reproducibly tuned over at least two orders of magnitude. The observed domain wall (DW) conductance tunability by the applied voltage can be correlated with phase-field simulated DW inclination evolution upon poling. Furthermore, evidence for polaron-based conduction is given.


Author(s):  
Xiao Zhang

Electron holography has recently been available to modern electron microscopy labs with the development of field emission electron microscopes. The unique advantage of recording both amplitude and phase of the object wave makes electron holography a effective tool to study electron optical phase objects. The visibility of the phase shifts of the object wave makes it possible to directly image the distributions of an electric or a magnetic field at high resolution. This work presents preliminary results of first high resolution imaging of ferroelectric domain walls by electron holography in BaTiO3 and quantitative measurements of electrostatic field distribution across domain walls.


Nano Letters ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 959-966
Author(s):  
Pedro Soubelet ◽  
Julian Klein ◽  
Jakob Wierzbowski ◽  
Riccardo Silvioli ◽  
Florian Sigger ◽  
...  

2004 ◽  
Vol 69 (6) ◽  
Author(s):  
Terrence Jach ◽  
Sungwon Kim ◽  
Venkatraman Gopalan ◽  
Stephen Durbin ◽  
David Bright

2017 ◽  
Vol 25 (22) ◽  
pp. 27818 ◽  
Author(s):  
Ji Yang ◽  
Xiaohui Zhao ◽  
Haigang Liu ◽  
Xianfeng Chen

2018 ◽  
Vol 4 (10) ◽  
pp. eaau5501 ◽  
Author(s):  
Alfred Zong ◽  
Xiaozhe Shen ◽  
Anshul Kogar ◽  
Linda Ye ◽  
Carolyn Marks ◽  
...  

Domain walls (DWs) are singularities in an ordered medium that often host exotic phenomena such as charge ordering, insulator-metal transition, or superconductivity. The ability to locally write and erase DWs is highly desirable, as it allows one to design material functionality by patterning DWs in specific configurations. We demonstrate such capability at room temperature in a charge density wave (CDW), a macroscopic condensate of electrons and phonons, in ultrathin 1T-TaS2. A single femtosecond light pulse is shown to locally inject or remove mirror DWs in the CDW condensate, with probabilities tunable by pulse energy and temperature. Using time-resolved electron diffraction, we are able to simultaneously track anti-synchronized CDW amplitude oscillations from both the lattice and the condensate, where photoinjected DWs lead to a red-shifted frequency. Our demonstration of reversible DW manipulation may pave new ways for engineering correlated material systems with light.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Naëmi Leo ◽  
Anders Bergman ◽  
Andres Cano ◽  
Narayan Poudel ◽  
Bernd Lorenz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document