Trapping Reactions of Benzynes Initiated by Intramolecular Nucleophilic Addition of a Carbonyl Oxygen to the Electrophilic Aryne

2021 ◽  
Author(s):  
Bhavani Shankar Chinta ◽  
Sahil Arora ◽  
Thomas R. Hoye
2019 ◽  
Vol 26 (21) ◽  
pp. 4003-4028 ◽  
Author(s):  
Fangjun Huo ◽  
Yaqiong Zhang ◽  
Caixia Yin

In recent years, aldehyde-appended fluorescence probes have attracted increasing attention. Fluorescent biological imaging includes many modern applications for cell and tissue imaging in biomedical research. Meanwhile, the nucleophilic mechanism is a very simple and convenient procedure for the preparation of aldehyde-sensing probes. This tutorial review focuses on aldehyde-bearing chemosensors based on nucleophilic addition mechanism with biological applications.


1979 ◽  
Vol 44 (5) ◽  
pp. 1496-1509 ◽  
Author(s):  
Pavel Kočovský ◽  
Václav Černý

Acid cleavage of the acetoxy epoxide IIIa with aqueous perchloric acid or hydrobromic acid gave two types of products, i.e. the diol Va or the bromohydrin VIa, and the cyclic ether VIII. The latter compound arises by participation of ether oxygen of the ester group. On reaction with perchloric acid the epoxide IVa gave the diol XIIIa as a product of a normal reaction and the isomeric diol Xa as a product arising by intramolecular participation of the carbonyl oxygen of the 19-acetoxy group. Participation of the 19-ester group is confirmed by the formation of the cyclic carbonate XI when the 19-carbonate IVb is treated analogously. On reaction with hydrobromic acid, the epoxide IVa gave solely the bromohydrin XIVa as a product of the normal reaction course. Discussed is the similarity of these reactions with electrophilic additions to the related 19-acetoxy olefins I and II, the mechanism, the difference in behavior of both epoxides III and IV, the dependence of the product ratio on the nucleophility of the attacking species, and the competition between participation of an ambident neighboring group and an external nucleophile attack.


1987 ◽  
Vol 52 (4) ◽  
pp. 970-979 ◽  
Author(s):  
Otto Exner ◽  
Pavel Fiedler

Aromatic chloroformates Ib-Ie were shown to exist in the ap conformation, in agreement with aliphatic chloroformates, i.e. the alkyl group is situated cis to the carbonyl oxygen atom as it is the case in all esters. While 4-nitrophenyl chloroformate (Ie) is in this conformation in crystal, in solution at most several tenths of percent of the sp conformation may be populated at room temperature and in nonpolar solvents only. A new analysis of dipole moments explained the previous puzzling results and demonstrated the impossibility to determine the conformation by this single method, in consequence of the strong interaction of adjoining bonds. If, however, the ap conformation is once proven, the dipole moments reveal some features of the electron distribution on the functional group, characterized by the enhanced polarity of the C-Cl bond and reduced polarity of the C=O bond. This is in agreement with the observed bond lengths and angles.


1989 ◽  
Vol 54 (2) ◽  
pp. 440-445 ◽  
Author(s):  
Vladimír Macháček ◽  
Alexandr Čegan ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The intramolecular nucleophilic addition of N-methyl-N-(2,4,6-trinitrophenyl)glycine anion in methanol-dimethyl sulfoxide mixtures produces spiro[(3-methyl-5-oxazolidinone)-2,1'-(2',4',6'-trinitrobenzenide)]. The spiro adduct has been identified by means of 1H and 13C NMR spectroscopy. This is the first case when the formation of a Meisenheimer adduct with carboxylate ion is observed. Logarithm of the equilibrium constant of adduct formation increases linearly with the mole fraction of dimethyl sulfoxide in its mixture with methanol.


Synthesis ◽  
2020 ◽  
Author(s):  
Ikyon Kim ◽  
Sung June Kim ◽  
Sunhee Lee

AbstractBroadening of nitrogen-fused heteroaromatic chemical space such as indolizine and pyrrolo[1,2-a]pyrazine was achieved via FeCl­3-catalyzed nucleophilic addition of these N-fused aromatic compounds to a wide range of azolinium systems generated in situ, leading to novel N-fused heteroaromatic scaffolds with dearomatized N-heterocyclic substituents regioselectively. Nucleophilic addition of indolizines and pyrrolo[1,2-a]pyrazines mainly occurred at the C1 position of the isoquinoliniums and at the C4 site of the quinoliniums.


Soft Matter ◽  
2021 ◽  
Author(s):  
Suprakash Samanta ◽  
Rashmi Ranjan Sahoo

Present study demonstrates a simple and multistep approach for the preparation of covalent functionalization of chemically prepared graphene oxide (GO) by branched polyethylenimine (PEI) through nucleophilic addition reaction to prepare...


1986 ◽  
Vol 41 (5-6) ◽  
pp. 618-626
Author(s):  
Alfred Gieren ◽  
Michail Kokkinidis

The crystal structures of the title compounds which display cholinergic activity at the ganglionic receptor have been determined by X-ray structure analysis. [(CH3)3N+C5H11]Cl- (1) crystallizes in the orthorhombic space group Pbnm with half a formula unit per asymmetric unit, a = 11.381(14). b = 12.871(17), c = 7.316(4) Å. The intensities of 1106 independent reflections were collected with an automatic diffractometer. The structure refinement converged at R = 0.133 for the 355 observed reflections. The cation of 1 is disordered. [(CH3)3N + (CH2)4-O-C(O)-CH3]I- (2) crystallizes in the orthorhombic space group P212121 with four formula units per unit cell, a = 16.783(8), b = 10.276(6), c = 7.427(10) Å. The intensities of 1469 independent reflections were collected. The structure refinement converged at R = 0.071 for 1383 observed reflections. In both compounds the trimethylammonio methyl groups are coordinated nearly tetrahedrally by four anions in the first coordination sphere. Anions which occupy a special face type (B) of the tetrahedron of the (CH3)3N+ -CH2-group may be treated as a “model binding site” of the receptor. In the crystal structure of 2 the anions occupying B-type faces form together with the ammonium nitrogen and the carbonyl oxygen so called “Activity triangles”. The almost equal geometries of these activity triangles are correlated with the mode of pharmacological action.


Sign in / Sign up

Export Citation Format

Share Document