scholarly journals Macrophilone A: Structure Elucidation, Total Synthesis, and Functional Evaluation of a Biologically Active Iminoquinone from the Marine HydroidMacrorhynchia philippina

2017 ◽  
Vol 19 (7) ◽  
pp. 1726-1729 ◽  
Author(s):  
Katherine Zlotkowski ◽  
William M. Hewitt ◽  
Pengcheng Yan ◽  
Heidi R. Bokesch ◽  
Megan L. Peach ◽  
...  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nayoun Hong ◽  
Seockmo Ku ◽  
Kyungjin Yuk ◽  
Tony V. Johnston ◽  
Geun Eog Ji ◽  
...  

Abstract Background Bifidobacterium spp. are representative probiotics that play an important role in the health of their hosts. Among various Bifidobacterium spp., B. bifidum BGN4 exhibits relatively high cell adhesion to colonic cells and has been reported to have various in vivo and in vitro bio functionalities (e.g., anti-allergic effect, anti-cancer effect, and modulatory effects on immune cells). Interleukin-10 (IL-10) has emerged as a major suppressor of immune response in macrophages and other antigen presenting cells and plays an essential role in the regulation and resolution of inflammation. In this study, recombinant B. bifidum BGN4 [pBESIL10] was developed to deliver human IL-10 effectively to the intestines. Results The vector pBESIL10 was constructed by cloning the human IL-10 gene under a gap promoter and signal peptide from Bifidobacterium spp. into the E. coli-Bifidobacterium shuttle vector pBES2. The secreted human IL-10 from B. bifidum BGN4 [pBESIL10] was analyzed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), Western Blotting, and enzyme-linked immunosorbent assay (ELISA). More than 1,473 ± 300 ng/mL (n = 4) of human IL-10 was obtained in the cell free culture supernatant of B. bifidum BGN4 [pBESIL10]. This productivity is significantly higher than other previously reported human IL-10 level from food grade bacteria. In vitro functional evaluation of the cell free culture supernatant of B. bifidum BGN4 [pBESIL10] revealed significantly inhibited interleukin-6 (IL-6) production in lipopolysaccharide (LPS)-induced Raw 264.7 cells (n = 6, p < 0.0001) and interleukin-8 (IL-8) production in LPS-induced HT-29 cells (n = 6, p < 0.01) or TNFα-induced HT-29 cells (n = 6, p < 0.001). Conclusion B. bifidum BGN4 [pBESIL10] efficiently produces and secretes significant amounts of biologically active human IL-10. The human IL-10 production level in this study is the highest of all human IL-10 production reported to date. Further research should be pursued to evaluate B. bifidum BGN4 [pBESIL10] producing IL-10 as a treatment for various inflammation-related diseases, including inflammatory bowel disease, rheumatoid arthritis, allergic asthma, and cancer immunotherapy.


2011 ◽  
Vol 6 (11) ◽  
pp. 1934578X1100601
Author(s):  
Karsten Krohn ◽  
Stephan Cludius-Brandt ◽  
Barbara Schulz ◽  
Mambatta Sreelekha ◽  
Pottachola Mohamed Shafi

Several biologically active alkaloids (1-4, 6), including a new quinazoline-6-carboxylic acid (1), were isolated from the medicinal plant Zanthoxylum rhetsa, an evergreen tree, native to subtropical areas. Whereas the pharmacological properties of the plant extract and single constituents have been widely tested, we now show that all of the metabolites have antialgal activities, all but 6 are antibacterial, and 6 and the reduction product 5 (derived from 4) are also antifungal.


ChemInform ◽  
2015 ◽  
Vol 46 (22) ◽  
pp. no-no
Author(s):  
Eiji Nishimura ◽  
Yasufumi Ohfune ◽  
Tetsuro Shinada

Synlett ◽  
2020 ◽  
Vol 32 (01) ◽  
pp. 45-50
Author(s):  
Udo Nubbemeyer ◽  
Analuisa Nava ◽  
Lukas Trippe ◽  
Andrea Frank ◽  
Lars Andernach ◽  
...  

AbstractStarting from methyl cycloheptatrienyl-1-carboxylate, 6-acylation was successfully achieved employing glutaryl chloride in the presence of AlCl3 under controlled reaction conditions to furnish keto carboxylic acid product. After protection of this keto carboxylic acid as tert-butyl ester, reagent-controlled enantioselective reductions delivered configuration-defined methyl-6-hydroxylalkyl cycloheptatriene-1-carboxylates with up to 80% ee. Whereas simple NaBH4 reduction of the keto carboxylic acid and subsequent lactonization afforded a methyl-6-tetrahydropyranonyl cycloheptatriene-1-carboxylate. Resolution using chiral HPLC delivered the product enantiomers with up to >99% ee Finally, ECD analyses enabled structure elucidation. The products are used as key intermediates in enantioselective 6,11-methylene-lipoxin B4 syntheses.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612 ◽  
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


2011 ◽  
Vol 123 (12) ◽  
pp. 2768-2771 ◽  
Author(s):  
Klement Foo ◽  
Timothy Newhouse ◽  
Ikue Mori ◽  
Hiromitsu Takayama ◽  
Phil S. Baran

2007 ◽  
Vol 79 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Luiz C. Dias ◽  
Luciana G. de Oliveira ◽  
Paulo R. R. Meira

This paper describes the convergent and stereocontrolled asymmetric total synthesis of (+)-crocacins C and D, potent inhibitors of animal cell cultures and several yeasts and fungi, and (-)-callystatin A, a potent antitumor polyketide.


Sign in / Sign up

Export Citation Format

Share Document