Synthesis and Electrochemical Performance of Uniform Carbon-Coated Na3V2(PO4)2F3 Using Tannic Acid as a Chelating Agent and Carbon Source

Author(s):  
Ning-Bo Jiang ◽  
Lu-Lu Zhang ◽  
Chen-Xu Cui ◽  
Lin Gao ◽  
Xue-Lin Yang
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1672
Author(s):  
Shih-Chieh Hsu ◽  
Tzu-Ten Huang ◽  
Yen-Ju Wu ◽  
Cheng-Zhang Lu ◽  
Huei Chu Weng ◽  
...  

Carbon-coated Li4Ti5O12 (LTO) has been prepared using polyimide (PI) as a carbon source via the thermal imidization of polyamic acid (PAA) followed by a carbonization process. In this study, the PI with different structures based on pyromellitic dianhydride (PMDA), 4,4′-oxydianiline (ODA), and p-phenylenediamine (p-PDA) moieties have been synthesized. The effect of the PI structure on the electrochemical performance of the carbon-coated LTO has been investigated. The results indicate that the molecular arrangement of PI can be improved when the rigid p-PDA units are introduced into the PI backbone. The carbons derived from the p-PDA-based PI show a more regular graphite structure with fewer defects and higher conductivity. As a result, the carbon-coated LTO exhibits a better rate performance with a discharge capacity of 137.5 mAh/g at 20 C, which is almost 1.5 times larger than that of bare LTO (94.4 mAh/g).


2018 ◽  
Vol 47 (8) ◽  
pp. 2711-2718 ◽  
Author(s):  
Zhaohui Meng ◽  
Song Wang ◽  
Lijuan Wang ◽  
Hongjiang Hou

LZTO@C–N with an excellent electrochemical performance has been synthesized using NTA as C and N sources, as well as a chelating agent.


2009 ◽  
Vol 117 (1371) ◽  
pp. 1225-1228 ◽  
Author(s):  
Yuta MIZUNO ◽  
Masashi KOTOBUKI ◽  
Hirokazu MUNAKATA ◽  
Kiyoshi KANAMURA

Author(s):  
R. P. Becker ◽  
J. J. Wolosewick ◽  
J. Ross-Stanton

Methodology has been introduced recently which allows transmission and scanning electron microscopy of cell fine structure in semi-thin sections unencumbered by an embedding medium. Images obtained from these “resinless” sections show a three-dimensional lattice of microtrabeculfee contiguous with cytoskeletal structures and membrane-bounded cell organelles. Visualization of these structures, especially of the matiiDra-nous components, can be facilitated by employing tannic acid in the fixation step and dessicator drying, as reported here.Albino rats were fixed by vascular perfusion with 2% glutaraldehyde or 1.5% depolymerized paraformaldehyde plus 2.5% glutaraldehyde in 0.1M sodium cacodylate (pH 7.4). Tissues were removed and minced in the fixative and stored overnight in fixative containing 4% tannic acid. The tissues were rinsed in buffer (0.2M cacodylate), exposed to 1% buffered osmium tetroxide, dehydrated in ethyl alcohol, and embedded in pure polyethylene glycol-6000 (PEG). Sections were cut on glass knives with a Sorvall MT-1 microtome and mounted onto poly-L-lysine, formvar-carbon coated grids while submerged in a solution of 95% ethanol containing 5% PEG.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xing Shen ◽  
Quan Zhou ◽  
Miao Han ◽  
Xingguo Qi ◽  
Bo Li ◽  
...  

AbstractNa-ion batteries have been considered promising candidates for stationary energy storage. However, their wide application is hindered by issues such as high cost and insufficient electrochemical performance, particularly for cathode materials. Here, we report a solvent-free mechanochemical protocol for the in-situ fabrication of sodium vanadium fluorophosphates. Benefiting from the nano-crystallization features and extra Na-storage sites achieved in the synthesis process, the as-prepared carbon-coated Na3(VOPO4)2F nanocomposite exhibits capacity of 142 mAh g−1 at 0.1C, higher than its theoretical capacity (130 mAh g−1). Moreover, a scaled synthesis with 2 kg of product was conducted and 26650-prototype cells were demonstrated to proof the electrochemical performance. We expect our findings to mark an important step in the industrial application of sodium vanadium fluorophosphates for Na-ion batteries.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 678
Author(s):  
Zhongkai Wu ◽  
Haifu Huang ◽  
Wenhui Xiong ◽  
Shiming Yang ◽  
Huanhuan Huang ◽  
...  

We report a novel Ni3S2 carbon coated (denoted as NCC) rod-like structure prepared by a facile one-pot hydrothermal method and employ it as a binder free electrode in supercapacitor. We coated carbon with glucose as carbon source on the surface of samples and investigated the suitable glucose concentration. The as-obtained NCC rod-like structure demonstrated great performance with a huge specific capacity of 657 C g−1 at 1 A g−1, preeminent rate capability of 87.7% retention, the current density varying to 10 A g−1, and great cycling stability of 76.7% of its original value through 3500 cycles, which is superior to the properties of bare Ni3S2. The result presents a facile, general, viable strategy to constructing a high-performance material for the supercapacitor applications.


2015 ◽  
Vol 294 ◽  
pp. 650-657 ◽  
Author(s):  
Zhifeng Huang ◽  
Li Liu ◽  
Qian Zhou ◽  
Jinli Tan ◽  
Zichao Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document