Responsive Thin-Film Interference Colors from Polaronic Conjugated Block Copolymers

Author(s):  
Cheon Woo Moon ◽  
Ji-eun Park ◽  
Minkyeong Park ◽  
Youngji Kim ◽  
Karnati Narasimha ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1412
Author(s):  
Eunkyung Ji ◽  
Cian Cummins ◽  
Guillaume Fleury

The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46–58 nm and periodicities of 70–102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.


2000 ◽  
Vol 112 (5) ◽  
pp. 2452-2462 ◽  
Author(s):  
H. P. Huinink ◽  
J. C. M. Brokken-Zijp ◽  
M. A. van Dijk ◽  
G. J. A. Sevink
Keyword(s):  

1972 ◽  
Vol 53 (1) ◽  
pp. 38-52 ◽  
Author(s):  
Susannah T. Rohrlich ◽  
Keith R. Porter

This paper presents the results of light and electron microscopy done on iridophores in the dorsal skin of the lizard Anolis carolinensis. New fine-structural details are revealed, and their importance is discussed. Of some interest is the complex of filaments between crystalline sheets in the cell. It is proposed that this complex is involved in the arrangement of crystals into crystalline sheets, and that the crystal arrangement and spacing are critical for the production of the cells' blue-green color. Tyndall scattering and thin-film interference are discussed as possible explanations for iridophore color production in relation to the fine-structural data obtained.


1991 ◽  
Author(s):  
Yuan S. Mei ◽  
Shi-Xuan Shang ◽  
Jin A. Shan ◽  
Jian G. Sun

2020 ◽  
Vol 5 (10) ◽  
pp. 1642-1657
Author(s):  
Cian Cummins ◽  
Guillaume Pino ◽  
Daniele Mantione ◽  
Guillaume Fleury

Recently engineered high χ-low N block copolymers for nanolithography are evaluated. Synthetic routes together with thin film processing strategies are highlighted that could enable the relentless scaling for logic technologies at sub-10 nanometres.


2015 ◽  
Vol 48 (7) ◽  
pp. 2107-2117 ◽  
Author(s):  
Harikrishna Erothu ◽  
Joanna Kolomanska ◽  
Priscilla Johnston ◽  
Stefan Schumann ◽  
Dargie Deribew ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 781 ◽  
Author(s):  
Sedakat Altinpinar ◽  
Wael Ali ◽  
Patrick Schuchardt ◽  
Pinar Yildiz ◽  
Hui Zhao ◽  
...  

On the basis of the major application for block copolymers to use them as separation membranes, lithographic mask, and as templates, the preparation of highly oriented nanoporous thin films requires the selective removal of the minor phase from the pores. In the scope of this study, thin film of polystyrene-block-poly(ethylene oxide) block copolymer with a photocleavable junction groups based on ortho-nitrobenzylester (ONB) (PS-hν-PEO) was papered via the spin coating technique followed by solvent annealing to obtain highly-ordered cylindrical domains. The polymer blocks are cleaved by means of a mild UV exposure and then the pore material is washed out of the polymer film by ultra-pure water resulting in arrays of nanoporous thin films to remove one block. The removal of the PEO materials from the pores was proven using the grazing-incidence small-angle X-ray scattering (GISAXS) technique. The treatment of the polymer film during the washing process was observed in real time after two different UV exposure time (1 and 4 h) in order to draw conclusions regarding the dynamics of the removal process. In-situ X-ray reflectivity measurements provide statistically significant information about the change in the layer thickness as well as the roughness and electron density of the polymer film during pore formation. 4 H UV exposure was found to be more efficient for PEO cleavage. By in-situ SFM measurements, the structure of the ultra-thin block copolymer films was also analysed and, thus, the kinetics of the washing process was elaborated. The results from both measurements confirmed that the washing procedure induces irreversible change in morphology to the surface of the thin film.


2004 ◽  
Vol 72 (2) ◽  
pp. 279-281 ◽  
Author(s):  
C. R. Wheeler ◽  
P. N. Henriksen ◽  
R. D. Ramsier

Sign in / Sign up

Export Citation Format

Share Document