Selective Deposition of Copper on Self-Assembled Block Copolymer Surfaces via Physical Vapor Deposition

Author(s):  
Sangho Lee ◽  
Wonmoo Lee ◽  
Hee-Tae Jung ◽  
Caroline A. Ross
2011 ◽  
Vol 9 (1) ◽  
pp. 49-67 ◽  
Author(s):  
Abuhanif K. Bhuiyan ◽  
S. K. Dew ◽  
M. Stepanova

AbstractWe report kinetic Monte-Karlo (KMC) simulation of self-assembled synthesis of nanocrystals by physical vapor deposition (PVD), which is one of most flexible, efficient, and clean techniques to fabricate nanopatterns. In particular, self-assembled arrays of nanocrystals can be synthesized by PVD. However size, shape and density of self-assembled nanocrystals are highly sensitive to the process conditions such as duration of deposition, temperature, substrate material, etc. To efficiently synthesize nanocrystalline arrays by PVD, the process control factors should be understood in detail. KMC simulations of film deposition are an important tool for understanding the mechanisms of film deposition. In this paper, we report a KMC modeling that explicitly represents PVD synthesis of self-assembled nanocrystals. We study how varying critical process parameters such as deposition rate, duration, temperature, and substrate type affect the lateral 2D morphologies of self-assembled metallic islands on substrates, and compare our results with experimentally observed surface morphologies generated by PVD. Our simulations align well with experimental results reported in the literature.


2009 ◽  
Vol 1177 ◽  
Author(s):  
Abuhanif Bhuiyan ◽  
Steven K. Dew ◽  
Maria Stepanova

AbstractEfficient methodologies for synthesis of nanocrystals (NC) are a crucial component for creation of nanostructured electronic components. Physical vapor deposition (PVD) is one of the most flexible techniques to fabricate self-assembled arrangements of nanoclusters. Controllable fabrication of such assemblies can improve reliability of nanocapacitors, enhance performance of magnetic memories, and has many applications in opto-electronics devices, etc. However, size, shape and density of nanocrystals are highly sensitive to the process conditions such as duration of deposition, temperature, substrate material, etc. To efficiently synthesize nanocrystalline arrays by PVD, the process control factors should be understood in greater detail. In this work, we present a kinetic Monte Carlo (KMC) model and report simulations that explicitly represent the PVD synthesis of nanocrystals on substrates. Here we study how varying the most important process parameters affects the morphologies of self-assembled metallic islands on substrates. We compare our results with experimentally observed surface morphologies generated by PVD and demonstrate that KMC models like this are an efficient tool for computer-aided design of PVD processes for synthesis of nanocrystals.


Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.


Biomaterials ◽  
2009 ◽  
Vol 30 (33) ◽  
pp. 6556-6563 ◽  
Author(s):  
Xin D. Guo ◽  
Jeremy P.K. Tan ◽  
Sung H. Kim ◽  
Li J. Zhang ◽  
Ying Zhang ◽  
...  

Small ◽  
2021 ◽  
pp. 2100437
Author(s):  
Deepra Bhattacharya ◽  
Subarna Kole ◽  
Orhan Kizilkaya ◽  
Joseph Strzalka ◽  
Polyxeni P. Angelopoulou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document