TEM characterization of WSix films

Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.

1999 ◽  
Author(s):  
Fazla R. M. Hossain ◽  
Satheesh Ambadi ◽  
Richard Winer ◽  
Ken Kitt ◽  
Carlos Garcia ◽  
...  

2001 ◽  
Vol 696 ◽  
Author(s):  
F. Rosei ◽  
N. Motta ◽  
A. Sgarlata ◽  
A. Balzarotti

AbstractScanning Probe Microscopy (SPM) in situ is used to study the evolution of Ge islands grown by Physical Vapor Deposition on Si(111) 7×7 reconstructed surfaces. Large 3D islands form on the Wetting Layer (WL), with average lateral dimension in the range 200 - 500 nm. The statistical distribution of the island shapes has been analyzed, showing that three types of shapes coexist under certain conditions: strained, partially relaxed and ripened (atoll-like) islands. We measured the contact angles of the island facets, and observed the depletion of the substrate around the ripened islands. These features are attributed to the misfit strain, which is partially relieved by interdiffusion of Si into the Ge layers.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1910-1915 ◽  
Author(s):  
MIN TENG ◽  
XIAODONG HE ◽  
YUE SUN

SiC films with a quantity of carbon and silicon were obtained by electron beam physical vapor deposition (EB-PVD) from a sintered SiC target with different current intensity of EB. The X-ray photoelectron spectroscopy (XPS) was used for characterization of chemical bonding states of C and Si elements in SiC films in order to study the influence of current intensity of EB on the compositions in the deposited films. At the same time, the nanohardness of the deposited films was investigated.


2011 ◽  
Vol 25 (19) ◽  
pp. 2567-2574 ◽  
Author(s):  
M. YEGANEH ◽  
M. SAREMI

Electron beam physical vapor deposition (EBPVD) is being used in coating components for many applications such as for producing nanostructures and integrated circuits (ICs) coating in electronic industry. In this work, copper was deposited on the SiO 2/p-type Si (100). Thin film characteristics are investigated by scanning electron microscopy and X-ray diffraction (XRD). Then oxidation behavior of deposits was evaluated by Dektak Surface Profiler and weight gain method at 200 and 300°C. Results showed that thin film copper deposited by EBPVD has better oxidation characteristics in comparison with copper foil.


1998 ◽  
Vol 526 ◽  
Author(s):  
Ashok Kumar ◽  
R. Alexandrescu ◽  
Michael A. George

AbstractLaser assisted methods such as laser physical vapor deposition (LPVD) and laser induced chemical vapor deposition (LCVD) have been utilized to grow carbon nitride (CNx) films on various substrates. It has been shown that the both techniques produce good quality thin films of CNx. In LPVD, a laser beam (λ= 248 nm) has been used to ablate the pyrolytic graphite target in nitrogen atmosphere, where as CO2 laser was to irradiate carbon-nitrogen containing mixtures such as C2H2/N2O/NH3 in LCVD method. A comparative analysis will be presented in terms of structural properties of CNx films prepared by both techniques.


Sign in / Sign up

Export Citation Format

Share Document