Bioactive Core–Shell Nanofiber Hybrid Scaffold for Efficient Suicide Gene Transfection and Subsequent Time Resolved Delivery of Prodrug for Anticancer Therapy

2015 ◽  
Vol 7 (33) ◽  
pp. 18717-18731 ◽  
Author(s):  
Uday Kumar Sukumar ◽  
Gopinath Packirisamy

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Haitao Chen ◽  
Renhua Li ◽  
Anqi Guo ◽  
Yu Xia

AbstractThe poor stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals is the most impediment to its application in the field of photoelectrics. In this work, monodisperse CsPbBr3/TiO2 nanocrystals are successfully prepared by coating titanium precursor on the surface of colloidal CsPbBr3 nanocrystals at room temperature. The CsPbBr3/TiO2 nanocomposites exhibit excellent stability, remaining the identical particle size (9.2 nm), crystal structures and optical properties. Time-resolved photoluminescence decay shows that the lifetime of CsPbBr3/TiO2 nanocrystals is about 4.04 ns and keeps great stability after lasting two months in the air. Results show that the coating of TiO2 on CsPbBr3 NCs greatly suppressed the anion exchange and photodegradation, which are the main reasons for dramatically improving their chemical stability and photostability. The results provide an effective method to solve the stability problem of perovskite nanostructures and are expected to have a promising application in optoelectronic fieldsArticle highlights 1. Prepared the all-inorganic CsPbBr3/TiO2 core/shell perovskite nanocrystals by an easy method. 2. Explored its essences of PL and lifetime of the synthesized CsPbBr3/TiO2 perovskite nanocrystals. 3. CsPbBr3/TiO2 nanocrystals show the great thermal stability after the post-annealing. 4. The CsPbBr3/TiO2 nanocrystals have a high PLQY and have a promising application in solar cells.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chin-Wei Lin ◽  
Jian-Ming Chen ◽  
You-Jun Lin ◽  
Ling-Wei Chao ◽  
Sin-Yi Wei ◽  
...  

Abstract Recently, gold-coated magnetic nanoparticles have drawn the interest of researchers due to their unique magneto-plasmonic characteristics. Previous research has found that the magneto-optical Faraday effect of gold-coated magnetic nanoparticles can be effectively enhanced because of the surface plasmon resonance of the gold shell. Furthermore, gold-coated magnetic nanoparticles are ideal for biomedical applications because of their high stability and biocompatibility. In this work, we synthesized Fe3O4@Au core-shell nanoparticles and coated streptavidin (STA) on the surface. Streptavidin is a protein which can selectively bind to biotin with a strong affinity. STA is widely used in biotechnology research including enzyme-linked immunosorbent assay (ELISA), time-resolved immunofluorescence (TRFIA), biosensors, and targeted pharmaceuticals. The Faraday magneto-optical characteristics of the biofunctionalized Fe3O4@Au nanoparticles were measured and studied. We showed that the streptavidin-coated Fe3O4@Au nanoparticles still possessed the enhanced magneto-optical Faraday effect. As a result, the possibility of using biofunctionalized Fe3O4@Au nanoparticles for magneto-optical biomedical assays should be explored.



2012 ◽  
Vol 4 (5) ◽  
pp. 970-972 ◽  
Author(s):  
QING TANG ◽  
XIAOHONG HE ◽  
HAIXING LIAO ◽  
LIANTU HE ◽  
YING WANG ◽  
...  


2007 ◽  
Vol 7 (2) ◽  
pp. 542-548 ◽  
Author(s):  
Cuikun Lin ◽  
Bo Zhao ◽  
Zhenling Wang ◽  
Min Yu ◽  
Huan Wang ◽  
...  

Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol–gel method, resulting in the formation of core–shell structured SiO2 @ GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core–shell structured materials. Both XRD and FT-IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2 @ GdPO4 : Eu3+ phosphors show orange-red luminescence with Eu3+ 5D0–7F1 (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2 @ GdPO4 : Eu3+ phosphors. The obtained core–shell phosphors have potential applications in FED and PDP devices.



2012 ◽  
Vol 1405 ◽  
Author(s):  
Jingyu Feng ◽  
Snehaunshu Chowdhury ◽  
Guoqiang Jian ◽  
Michael R. Zachariah

ABSTRACTFollowing the generic strategy of creating core-shell structured nanoparticles reported by our group previously [1] and exploring its applications, an aerosol route combined with iron carbonyl decomposition was developed to encapsulate strong oxidizer within mild oxidizer particles. This modified method enables the application of hygroscopic nano-energetic materials by stabilizing them within a water-insoluble shell. Fe2O3/I2O5 composite oxidizers have been created. Some of the results obtained from combustion tests show that the composite system significantly outperforms the single metal oxide (Fe2O3) system in both pressurization rate and peak pressure. The time-resolved mass spectrometry shows that a significant amount of O2 and I2 are released from the composite oxidizers. These preliminary results suggest a supplement to the previous strategy of obtaining the core-shell structured composite oxidizers and the method still needs to be further optimized.



ACS Omega ◽  
2019 ◽  
Vol 4 (22) ◽  
pp. 19614-19622 ◽  
Author(s):  
Asifkhan Shanavas ◽  
Nishant K. Jain ◽  
Navneet Kaur ◽  
Dinesh Thummuri ◽  
Maruthi Prasanna ◽  
...  


2007 ◽  
Vol 7 (2) ◽  
pp. 542-548
Author(s):  
Cuikun Lin ◽  
Bo Zhao ◽  
Zhenling Wang ◽  
Min Yu ◽  
Huan Wang ◽  
...  

Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol–gel method, resulting in the formation of core–shell structured SiO2 @ GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core–shell structured materials. Both XRD and FT-IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2 @ GdPO4 : Eu3+ phosphors show orange-red luminescence with Eu3+ 5D0–7F1 (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2 @ GdPO4 : Eu3+ phosphors. The obtained core–shell phosphors have potential applications in FED and PDP devices.



RSC Advances ◽  
2016 ◽  
Vol 6 (50) ◽  
pp. 44859-44864 ◽  
Author(s):  
Jiaming Li ◽  
Yang Liu ◽  
Jie Hua ◽  
Lianhua Tian ◽  
Jialong Zhao

The photoluminescence (PL) properties of transition metal ion (Mn2+ or Cu+) doped Zn–In–S/ZnS core/shell quantum dots (QDs) in solution and solid films were investigated by using steady-state and time-resolved PL spectra.



2003 ◽  
Vol 75 (22) ◽  
pp. 6124-6132 ◽  
Author(s):  
Takeshi Matsuya ◽  
Shigeru Tashiro ◽  
Nobuhiro Hoshino ◽  
Naoya Shibata ◽  
Yukio Nagasaki ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document