Controlling Superwettability by Microstructure and Surface Energy Manipulation on Three-Dimensional Substrates for Versatile Gravity-Driven Oil/Water Separation

2017 ◽  
Vol 9 (43) ◽  
pp. 37529-37535 ◽  
Author(s):  
Hao-Yang Mi ◽  
Xin Jing ◽  
Han-Xiong Huang ◽  
Lih-Sheng Turng
2021 ◽  
Vol 36 (1) ◽  
pp. 189-197
Author(s):  
Sen Wang ◽  
Xiao Wang ◽  
Xiao-yu Shi ◽  
Cai-xia Meng ◽  
Cheng-lin Sun ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 457
Author(s):  
Chunlei Ren ◽  
Wufeng Chen ◽  
Chusheng Chen ◽  
Louis Winnubst ◽  
Lifeng Yan

Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1593 ◽  
Author(s):  
Hajo Yagoub ◽  
Liping Zhu ◽  
Mahmoud H. M. A. Shibraen ◽  
Ali A. Altam ◽  
Dafaalla M. D. Babiker ◽  
...  

The complex aerogel generated from nano-polysaccharides, chitin nanocrystals (ChiNC) and TEMPO-oxidized cellulose nanofibers (TCNF), and its derivative cationic guar gum (CGG) is successfully prepared via a facile freeze-drying method with glutaraldehyde (GA) as cross-linkers. The complexation of ChiNC, TCNF, and CGG is shown to be helpful in creating a porous structure in the three-dimensional aerogel, which creates within the aerogel with large pore volume and excellent compressive properties. The ChiNC/TCNF/CGG aerogel is then modified with methyltrichlorosilane (MTCS) to obtain superhydrophobicity/superoleophilicity and used for oil–water separation. The successful modification is demonstrated through FTIR, XPS, and surface wettability studies. A water contact angle of 155° on the aerogel surface and 150° on the surface of the inside part of aerogel are obtained for the MTCS-modified ChiNC/TCNF/CGG aerogel, resulting in its effective absorption of corn oil and organic solvents (toluene, n-hexane, and trichloromethane) from both beneath and at the surface of water with excellent absorption capacity (i.e., 21.9 g/g for trichloromethane). More importantly, the modified aerogel can be used to continuously separate oil from water with the assistance of a vacuum setup and maintains a high absorption capacity after being used for 10 cycles. The as-prepared superhydrophobic/superoleophilic ChiNC/TCNF/CGG aerogel can be used as a promising absorbent material for the removal of oil from aqueous media.


2018 ◽  
Vol 338 ◽  
pp. 271-277 ◽  
Author(s):  
Chenghong Ao ◽  
Rui Hu ◽  
Jiangqi Zhao ◽  
Xiaofang Zhang ◽  
Qingye Li ◽  
...  

Author(s):  
Jayaramulu Kolleboyina ◽  
HANEESH SAINI ◽  
Parashuram Kallem ◽  
Eva Otyepková ◽  
Florian Geyer ◽  
...  

Superhydrophobic MOF-nanosheets assembled on the outside of an aqueous droplet form ‘liquid marbles’. A facile mechanochemical-based synthesis followed by ultrasonication was used to prepare two-dimensional superhydrophobic-oleophilic MOF nanosheets of a...


2019 ◽  
Vol 1 (4) ◽  
pp. 765-776 ◽  
Author(s):  
Ilin Sadeghi ◽  
Nelaka Govinna ◽  
Peggy Cebe ◽  
Ayse Asatekin

Nanoscale ◽  
2019 ◽  
Vol 11 (25) ◽  
pp. 12161-12168 ◽  
Author(s):  
Xiao Ge ◽  
Wenxiu Qin ◽  
Haimin Zhang ◽  
Guozhong Wang ◽  
Yunxia Zhang ◽  
...  

A 3D porous Co@C/CF hybrid monolith and the corresponding oil-collecting device have been successfully fabricated for exceptional oil/water separation.


Sign in / Sign up

Export Citation Format

Share Document