Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal–Organic Frameworks

2018 ◽  
Vol 10 (22) ◽  
pp. 18435-18439 ◽  
Author(s):  
Mohammad R. Momeni ◽  
Christopher J. Cramer
2020 ◽  
Vol 12 (13) ◽  
pp. 14702-14720 ◽  
Author(s):  
Kent O. Kirlikovali ◽  
Zhijie Chen ◽  
Timur Islamoglu ◽  
Joseph T. Hupp ◽  
Omar K. Farha

2019 ◽  
Author(s):  
MohammadReza MomeniTaheri ◽  
Christopher J. Cramer

Understanding how different factors affect the electronic prop-erties of metal-organic frameworks (MOFs) is critical to under-standing their potential for catalysis and to serve as catalyst supports. In this work, periodic dispersion corrected PBE cal-culations are performed to assess the catalytic activity of dif-ferent Zr6 vs Zr12 metal-organic frameworks (MOFs) for the heterogeneous catalytic hydrolysis of the chemical warfare agent (CWA) sarin. Using a comprehensive series of extended periodic models capable of capturing long-range sar-in/water/framework interactions in both Zr6 and Zr12 MOFs, the effect of numbers and morphologies of defective sites as well as ZrIV substitution with heavier CeIV are thoroughly in-vestigated. Our calculations show that hydrogen bonds in-volving both metal-oxide nodes and organic linkers can play important roles in the catalysis. Insights derived from this work should inform the design and realization of more effec-tive and robust next-generation MOF-based heterogeneous catalysts.


2019 ◽  
Author(s):  
MohammadReza MomeniTaheri ◽  
Christopher J. Cramer

Understanding how different factors affect the electronic prop-erties of metal-organic frameworks (MOFs) is critical to under-standing their potential for catalysis and to serve as catalyst supports. In this work, periodic dispersion corrected PBE cal-culations are performed to assess the catalytic activity of dif-ferent Zr6 vs Zr12 metal-organic frameworks (MOFs) for the heterogeneous catalytic hydrolysis of the chemical warfare agent (CWA) sarin. Using a comprehensive series of extended periodic models capable of capturing long-range sar-in/water/framework interactions in both Zr6 and Zr12 MOFs, the effect of numbers and morphologies of defective sites as well as ZrIV substitution with heavier CeIV are thoroughly in-vestigated. Our calculations show that hydrogen bonds in-volving both metal-oxide nodes and organic linkers can play important roles in the catalysis. Insights derived from this work should inform the design and realization of more effec-tive and robust next-generation MOF-based heterogeneous catalysts.


Author(s):  
Mohammad Rasel Mian ◽  
Haoyuan Chen ◽  
Ran Cao ◽  
Kent O. Kirlikovali ◽  
Randall Q. Snurr ◽  
...  

2021 ◽  
Vol 444 ◽  
pp. 214064
Author(s):  
Danni Jiang ◽  
Chao Huang ◽  
Jian Zhu ◽  
Ping Wang ◽  
Zhiming Liu ◽  
...  

2020 ◽  
Author(s):  
Siddhartha De ◽  
Thomas Devic ◽  
Alexandra Fateeva

Given the ubiquitous role of porphyrins in natural systems, these molecules and related derivatives such as phthalocyanines are fascinating building units to achieve functional porous materials. Porphyrin-based MOFs have been...


2020 ◽  
Vol 40 ◽  
pp. 156-170 ◽  
Author(s):  
Ping Shao ◽  
Luocai Yi ◽  
Shumei Chen ◽  
Tianhua Zhou ◽  
Jian Zhang

Sign in / Sign up

Export Citation Format

Share Document