scholarly journals Computational Screening of Roles of Defects and Metal Substitution on Reactivity of Different Single- vs Double-Node Metal–Organic Frameworks for Sarin Decomposition

2019 ◽  
Author(s):  
MohammadReza MomeniTaheri ◽  
Christopher J. Cramer

Understanding how different factors affect the electronic prop-erties of metal-organic frameworks (MOFs) is critical to under-standing their potential for catalysis and to serve as catalyst supports. In this work, periodic dispersion corrected PBE cal-culations are performed to assess the catalytic activity of dif-ferent Zr6 vs Zr12 metal-organic frameworks (MOFs) for the heterogeneous catalytic hydrolysis of the chemical warfare agent (CWA) sarin. Using a comprehensive series of extended periodic models capable of capturing long-range sar-in/water/framework interactions in both Zr6 and Zr12 MOFs, the effect of numbers and morphologies of defective sites as well as ZrIV substitution with heavier CeIV are thoroughly in-vestigated. Our calculations show that hydrogen bonds in-volving both metal-oxide nodes and organic linkers can play important roles in the catalysis. Insights derived from this work should inform the design and realization of more effec-tive and robust next-generation MOF-based heterogeneous catalysts.

2019 ◽  
Author(s):  
MohammadReza MomeniTaheri ◽  
Christopher J. Cramer

Understanding how different factors affect the electronic prop-erties of metal-organic frameworks (MOFs) is critical to under-standing their potential for catalysis and to serve as catalyst supports. In this work, periodic dispersion corrected PBE cal-culations are performed to assess the catalytic activity of dif-ferent Zr6 vs Zr12 metal-organic frameworks (MOFs) for the heterogeneous catalytic hydrolysis of the chemical warfare agent (CWA) sarin. Using a comprehensive series of extended periodic models capable of capturing long-range sar-in/water/framework interactions in both Zr6 and Zr12 MOFs, the effect of numbers and morphologies of defective sites as well as ZrIV substitution with heavier CeIV are thoroughly in-vestigated. Our calculations show that hydrogen bonds in-volving both metal-oxide nodes and organic linkers can play important roles in the catalysis. Insights derived from this work should inform the design and realization of more effec-tive and robust next-generation MOF-based heterogeneous catalysts.


RSC Advances ◽  
2015 ◽  
Vol 5 (41) ◽  
pp. 32795-32803 ◽  
Author(s):  
Kai Huang ◽  
Yang Xu ◽  
Lianguang Wang ◽  
Dongfang Wu

Two different porous copper metal–organic frameworks (Cu-MOFs) named as Cu3(BTC)2 and Cu(BDC) were synthesized and applied as heterogeneous catalysts for the catalytic wet peroxide oxidation (CWPO) of simulated phenol wastewater (100 mg L−1).


2015 ◽  
Vol 54 (22) ◽  
pp. 10829-10833 ◽  
Author(s):  
Su-Young Moon ◽  
George W. Wagner ◽  
Joseph E. Mondloch ◽  
Gregory W. Peterson ◽  
Jared B. DeCoste ◽  
...  

2019 ◽  
Author(s):  
Andrew Rosen ◽  
M. Rasel Mian ◽  
Timur Islamoglu ◽  
Haoyuan Chen ◽  
Omar Farha ◽  
...  

<p>Metal−organic frameworks (MOFs) with coordinatively unsaturated metal sites are appealing as adsorbent materials due to their tunable functionality and ability to selectively bind small molecules. Through the use of computational screening methods based on periodic density functional theory, we investigate O<sub>2</sub> and N<sub>2</sub> adsorption at the coordinatively unsaturated metal sites of several MOF families. A variety of design handles are identified that can be used to modify the redox activity of the metal centers, including changing the functionalization of the linkers (replacing oxido donors with sulfido donors), anion exchange of bridging ligands (considering μ-Br<sup>-</sup>, μ-Cl<sup>-</sup>, μ-F<sup>-</sup>, μ-SH<sup>-</sup>, or μ-OH<sup>-</sup> groups), and altering the formal oxidation state of the metal. As a result, we show that it is possible to tune the O<sub>2</sub> affinity at the open metal sites of MOFs for applications involving the strong and/or selective binding of O<sub>2</sub>. In contrast with O<sub>2</sub> adsorption, N<sub>2</sub> adsorption at open metal sites is predicted to be relatively weak across the MOF dataset, with the exception of MOFs containing synthetically elusive V<sup>2+</sup> open metal sites. As one example from the screening study, we predict that exchanging the μ-Cl<sup>-</sup> ligands of M<sub>2</sub>Cl<sub>2</sub>(BBTA) (H<sub>2</sub>BBTA = 1<i>H</i>,5<i>H</i>-benzo(1,2-d:4,5-d′)bistriazole) with μ-OH<sup>-</sup> groups would significantly enhance the strength of O<sub>2</sub> adsorption at the open metal sites without a corresponding increase in the N<sub>2</sub> affinity. Experimental investigation of Co<sub>2</sub>Cl<sub>2</sub>(BBTA) and Co<sub>2</sub>(OH)<sub>2</sub>(BBTA) confirms that the former exhibits only weak physisorption, whereas the latter is capable of chemisorbing O<sub>2</sub> at room temperature. The chemisorption behavior is attributed to the greater electron-donating character of the μ-OH<sup>-</sup><sub> </sub>ligands and the presence of H-bonding interactions between the μ-OH<sup>-</sup> bridging ligands and the O<sub>2</sub> adsorbate.</p>


2020 ◽  
Vol 24 (16) ◽  
pp. 1876-1891
Author(s):  
Qiuyun Zhang ◽  
Yutao Zhang ◽  
Jingsong Cheng ◽  
Hu Li ◽  
Peihua Ma

Biofuel synthesis is of great significance for producing alternative fuels. Among the developed catalytic materials, the metal-organic framework-based hybrids used as acidic, basic, or supported catalysts play major roles in the biodiesel production. This paper presents a timely and comprehensive review of recent developments on the design and preparation of metal-organic frameworks-based catalysts used for biodiesel synthesis from various oil feedstocks, including MILs-based catalysts, ZIFs-based catalysts, UiO-based catalysts, Cu-BTC-based catalysts, and MOFs-derived porous catalysts. Due to their unique and flexible structures, excellent thermal and hydrothermal stability, and tunable host-guest interactions, as compared with other heterogeneous catalysts, metal-organic framework-based catalysts have good opportunities for application in the production of biodiesel at industrial scale.


2021 ◽  
Author(s):  
Jun Guo ◽  
Yutian Qin ◽  
Yanfei Zhu ◽  
Xiaofei Zhang ◽  
Chang Long ◽  
...  

Selective organic transformations using metal–organic frameworks (MOFs) and MOF-based heterogeneous catalysts have been an intriguing but challenging research topic in both the chemistry and materials communities.


2021 ◽  
Author(s):  
Panyapat Ponchai ◽  
Kanyaporn Adpakpang ◽  
Sareeya Bureekaew

Utilization of metal-organic frameworks as heterogeneous catalysts is crucial owing to their abundant catalytic sites and well-defined porous structures. Highly robust [Cu3(trz)3(μ3-OH)(OH)2(H2O)4]∙2H2O (trz = 1,2,4-triazole) was employed as a catalyst...


Sign in / Sign up

Export Citation Format

Share Document