scholarly journals Combined Magnetoliposome Formation and Drug Loading in One Step for Efficient Alternating Current-Magnetic Field Remote-Controlled Drug Release

2020 ◽  
Vol 12 (4) ◽  
pp. 4295-4307 ◽  
Author(s):  
Maria Eugenia Fortes Brollo ◽  
Ana Domínguez-Bajo ◽  
Andrea Tabero ◽  
Vicente Domínguez-Arca ◽  
Victor Gisbert ◽  
...  
2019 ◽  
Vol 84 (9) ◽  
pp. 1027-1039 ◽  
Author(s):  
László Almásy ◽  
Ana-Maria Putz ◽  
Qiang Tian ◽  
Gennady Kopitsa ◽  
Tamara Khamova ◽  
...  

The mesoporous silica particles were prepared by the sol?gel method in one-step synthesis, in acidic conditions, from tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES), varying the mole ratio of the silica precursors. Nitric acid was used as catalyst at room temperature and hexadecyltrimethyl ammonium bromide (CTAB) as structure directing agent. Optical properties, porosity and microstructure of the materials in function of the MTES/TEOS ratio were evaluated using infrared spectroscopy, nitrogen adsorption and small angle X-ray scattering. All materials showed the ordered pore structure and the high specific surfaces, making them suitable as the drug delivery systems. Drug loading and release tests using ketoprofen were performed to assess their performance for drug delivery applications. The amount of the methylated precursor used in the synthesis had little effect on the drug loading capacity, but had a strong influence on the initial rate of the drug release.


2019 ◽  
Vol 552 ◽  
pp. 689-700 ◽  
Author(s):  
Kseniya Yu. Vlasova ◽  
Alexander Piroyan ◽  
Irina M. Le-Deygen ◽  
Hemant M. Vishwasrao ◽  
Jacob D. Ramsey ◽  
...  

2014 ◽  
Vol 10 ◽  
pp. 2696-2703 ◽  
Author(s):  
Yamei Zhao ◽  
Wei Tian ◽  
Guang Yang ◽  
Xiaodong Fan

In this paper, a novel, multifunctional polymer nanocarrier was designed to provide adequate volume for high drug loading, to afford a multiregion encapsulation ability, and to achieve controlled drug release. An amphiphilic, triblock polymer (ABC) with hyperbranched polycarbonsilane (HBPCSi) and β-cyclodextrin (β-CD) moieties were first synthesized by the combination of a two-step reversible addition-fragmentation transfer polymerization into a pseudo-one-step hydrosilylation and quaternization reaction. The ABC then self-assembled into stable micelles with a core–shell structure in aqueous solution. These resulting micelles are multifunctional nanocarriers which possess higher drug loading capability due to the introduction of HBPCSi segments and β-CD moieties, and exhibit controlled drug release based on the diffusion release mechanism. The novel multifunctional nanocarrier may be applicable to produce highly efficient and specialized delivery systems for drugs, genes, and diagnostic agents.


2018 ◽  
Vol 28 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Chao Li ◽  
Jianzhao Geng ◽  
Jamie Gawith ◽  
Boyang Shen ◽  
Xiuchang Zhang ◽  
...  

2002 ◽  
Vol 55 (1-2) ◽  
pp. 17-19 ◽  
Author(s):  
M Babincová ◽  
P Čičmanec ◽  
V Altanerová ◽  
Č Altaner ◽  
P Babinec

2016 ◽  
Vol 170 ◽  
pp. 93-96 ◽  
Author(s):  
Bo Chen ◽  
Yang Li ◽  
Xiquan Zhang ◽  
Fei Liu ◽  
Yanlong Liu ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (48) ◽  
pp. 29986-29996
Author(s):  
Xiuxiu Qi ◽  
Hongmei Yan ◽  
Yingxue Li

A pH-sensitive core–shell nanoparticle (HMS@C18@PSDMA-b-POEGMA) was developed via a self-assembly process as the carrier of anticancer drug doxorubicin (DOX) for drug loading and controlled release.


1970 ◽  
Vol 12 (4) ◽  
Author(s):  
Md. Shariful Islam, Yoshihumi Kusumoto, Md. Abdulla Al-Mamun And Yuji Horie

We synthesized mixed α and γ-Fe2O3 nanoparticles and investigated their toxic effects against HeLa cells under induced AC (alternating current) magnetic-fields and photoexcited conditions at room temperature. The findings revealed that the cell-killing percentage was increased with increasing dose for all types of treatments. Finally, 99% cancer cells were destructed at 1.2 mL dose when exposed to combined AC magnetic-field and photoexcited conditions (T3) whereas 89 and 83 % of HeLa cells were killed under only AC magnetic-field induced (T1) or only photoexcited (T2) condition at the same dose.ABSTRAK: Campuran α dan zarah γ-Fe2O3 bersaiz nano disintesiskan dan kesan toksidnya terhadap sel HeLa dikaji dibawah aruhan medan magnet arus ulang-alik (alternating current (AC)) dan keadaan photoexcited (proses ransangan atom atau molekul suatu bahan dengan penyerapan tenaga sinaran) pada suhu bilik. Penemuan mendedahkan bahawa peratusan sel yang musnah bertambah dengan pertambahan dos untuk semua jenis rawatan. Akhirnya, 99% sel kanser dimusnahkan pada kadar dos 1.2mL setelah didedahkan terhadap kombinasi medan magnet AC dan keadaan photoexcited (T3) dimana 89% dan 83% sel HeLa dimusnahkan dengan hanya di bawah aruhan medan magnet AC (T1) atau hanya pada keadaan photoexcited (T2) pada kadar dos yang sama.KEY WORDS : Cancer, Hyperthermia, Iron oxide nanoparticles, Heat dissipation,    Cytotoxicity, HeLa cell.


2013 ◽  
Vol 844 ◽  
pp. 166-169 ◽  
Author(s):  
Prapaporn Boonme ◽  
Kamon Panrat ◽  
Wiwat Pichayakorn

Pseudolatex is colloidal dispersion containing spherical solid or semisolid particles and can be prepared from any existing thermoplastic water-insoluble polymers. It is useful for drug encapsulation and controlled drug release. In this study, pseudolatex base was prepared from STR 5L block rubber. The various parameters such as speed and time of homogenization, type and concentration of surfactants, amount of mineral oil, and type of drug loading were studied to prepare the stable pseudolatex. These preparations were evaluated in particle size, pH, viscosity, emulsion stability, drug encapsulation, and in vitro drug release. It was found that the most stable formulation contained 3.5% block rubber, 0.2% methyl cellulose, 6% mineral oil, 4% dibutyl phthalate, 2% sodium lauryl sulfate, and 2% Uniphen P-23 using the speed and time of homogenizer as 20000 rpm and 20 minutes, respectively. Furthermore, the pseudolatex bases reduced the protein impurity form 0.5516% to 0.2108% in formulation with mineral oil and to 0.1781% in formulation without mineral oil, that could decrease contact allergy caused by the protein allergens. Dichloromethane residues in pseudolatex bases were 22.05 mg/L and 7.85 mg/L in formulations with and without mineral oil, respectively, that were satisfied from USP recommendation value of lower than 600 mg/L. Propranolol HCl, lidocaine HCl, and indomethacin could be loaded into pseudolatex only in the concentration of 1%. However, lidocaine base in the concentration of 1-5% could be loaded into pseudolatex which had the similar physical properties and stability to pseudolatex base. The in vitro drug release from pseudolatexs provided the controlled drug release for more than 24 hr.


Sign in / Sign up

Export Citation Format

Share Document