scholarly journals High-Throughput Nanocapillary Filling Enabled by Microwave Radiation for Scanning Ion Conductance Microscopy Imaging

2020 ◽  
Vol 3 (8) ◽  
pp. 7829-7834 ◽  
Author(s):  
Vytautas Navikas ◽  
Samuel M. Leitão ◽  
Sanjin Marion ◽  
Sebastian James Davis ◽  
Barney Drake ◽  
...  
2018 ◽  
Vol 24 (3) ◽  
pp. 264-276 ◽  
Author(s):  
Jian Zhuang ◽  
Zhiwu Wang ◽  
Zeqing Li ◽  
Pengbo Liang ◽  
Mugubo Vincent

AbstractTo solve extended acquisition time issues inherent in the conventional hopping-scanning mode of scanning ion-conductance microscopy (SICM), a new transverse-fast scanning mode (TFSM) is proposed. Because the transverse motion in SICM is not the detection direction and therefore presents no collision problem, it has the ability to move at high speed. In TSFM, the SICM probe gradually descends in the vertical/detection direction and rapidly scans in the transverse/nondetection direction. Further, the highest point that decides the hopping height of each scanning line can be quickly obtained. In conventional hopping mode, however, the hopping height is artificially set without a priori knowledge and is typically very large. Consequently, TFSM greatly improves the scanning speed of the SICM imaging system by effectively reducing the hopping height of each pixel. This study verifies the feasibility of this novel scanning method via theoretical analysis and experimental study, and compares the speed and quality of the scanning images obtained in the TFSM with that of the conventional hopping mode. The experimental results indicate that the TFSM method has a faster scanning speed than other SICM scanning methods while maintaining the quality of the images. Therefore, TFSM provides the possibility to quickly obtain high-resolution three-dimensional topographical images of extremely complex samples.


2020 ◽  
Vol 28 (10) ◽  
pp. 2203-2214
Author(s):  
Jian ZHUANG ◽  
◽  
Zhi-wu WANG ◽  
Xiao-bo LIAO ◽  

2021 ◽  
Vol 27 (S1) ◽  
pp. 500-502
Author(s):  
Oleg Suchalko ◽  
Roman Timoshenko ◽  
Alexander Vaneev ◽  
Vasilii Kolmogorov ◽  
Nikita Savin ◽  
...  

2013 ◽  
Vol 104 (2) ◽  
pp. 317a
Author(s):  
Yusuke Mizutani ◽  
Zen Ishikura ◽  
Myung-Hoon Choi ◽  
Sang-Joon Cho ◽  
Takaharu Okajima

2017 ◽  
Vol 114 (9) ◽  
pp. 2395-2400 ◽  
Author(s):  
Umesh Vivekananda ◽  
Pavel Novak ◽  
Oscar D. Bello ◽  
Yuri E. Korchev ◽  
Shyam S. Krishnakumar ◽  
...  

Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog–digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization. We recorded instead from small boutons supplied by intact axons identified with scanning ion conductance microscopy in primary hippocampal cultures and asked how distinct potassium channels interact in determining the basal spike width and its modulation by subthreshold somatic depolarization. Pharmacological or genetic deletion of Kv1.1 broadened presynaptic spikes without preventing further prolongation by brief depolarizing somatic prepulses. A heterozygous mouse model of episodic ataxia type 1 harboring a dominant Kv1.1 mutation had a similar broadening effect on basal spike shape as deletion of Kv1.1; however, spike modulation by somatic prepulses was abolished. These results argue that the Kv1.1 subunit is not necessary for subthreshold modulation of spike width. However, a disease-associated mutant subunit prevents the interplay of analog and digital transmission, possibly by disrupting the normal stoichiometry of presynaptic potassium channels.


2011 ◽  
Vol 17 (S2) ◽  
pp. 236-237
Author(s):  
G De Filippi ◽  
C Moore

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


Sign in / Sign up

Export Citation Format

Share Document