Resonant-Like Field Enhancement by Nanoscale Grating-Coupled Propagating Surface Plasmons and Localized Surface Plasmons in the Mid-Infrared Range: Implications for Ultrafast Plasmonic Electron Sources

2019 ◽  
Vol 2 (11) ◽  
pp. 7067-7073
Author(s):  
Tomoya Mizuno ◽  
Kengo Takeuchi ◽  
Keisuke Kaneshima ◽  
Nobuhisa Ishii ◽  
Teruto Kanai ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4008
Author(s):  
Lanlan Zhang ◽  
Binghan Xue ◽  
Yueke Wang

In this paper, a new kind of graphene double-ribbon bend structure, which can support two edge graphene surface plasmons (EGSPs) modes, is proposed. In this double-ribbon bend, one edge mode can be partly converted into another one. We attribute the mode conversion mechanism to the interference between the two edge plasmonic modes. Based on the finite element method (FEM), we calculate the transmission and loss of EGSPs propagating along this graphene double-ribbon bend in the mid-infrared range under different parameters.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Eduardo Martínez Castellano ◽  
Julen Tamayo-Arriola ◽  
Miguel Montes Bajo ◽  
Alicia Gonzalo ◽  
Lazar Stanojević ◽  
...  

Abstract Metal-oxides hold promise as superior plasmonic materials in the mid-infrared compared to metals, although their integration over established material technologies still remains challenging. We demonstrate localized surface plasmons in self-assembled, hemispherical CdZnO metal-oxide nanoparticles on GaAs, as a route to enhance the absorption in mid-infrared photodetectors. In this system, two localized surface plasmon modes are identified at 5.3 and 2.7 μm, which yield an enhancement of the light intensity in the underlying GaAs. In the case of the long-wavelength mode the enhancement is as large as 100 near the interface, and persists at depths down to 50 nm. We show numerically that both modes can be coupled to infrared intersubband transitions in GaAs-based multiple quantum wells, yielding an absorbed power gain as high as 5.5, and allowing light absorption at normal incidence. Experimentally, we demonstrate this coupling in a nanoparticle/multiple quantum well structure, where under p-polarization the intersubband absorption is enhanced by a factor of 2.5 and is still observed under s-polarization, forbidden by the usual absorption selection rules. Thus, the integration of CdZnO on GaAs can help improve the figures of merit of quantum well infrared photodetectors, concept that can be extended to other midinfrared detector technologies.


Nanophotonics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 1891-1916 ◽  
Author(s):  
Ibrahim Abdulhalim

AbstractLocal enhancement of electromagnetic (EM) fields near dielectric and metallic surfaces is usually associated with the existence of a confined EM wave at least in one direction. This phenomenon finds applications in enhancing optical spectroscopic signals, optical emission, nonlinear optical processes, biosensing, imaging contrast and superresolution, photovoltaics response, local heating, photocatalysis, and enhanced efficiency of optoelectronic devices. A well-known example is when the surface electromagnetic wave (SEW) is excited at the interface of two media, the field gets enhanced normally to that interface. This article reviews the different configurations revealing enhanced EM fields, particularly those giving ultrahigh enhancement, such as when a localized SEW is excited not from free space but via an extended SEW. Of particular interest are surface plasmon waves (SPWs) excited at the surface of metal-dielectric and particularly when exciting localized SPWs using extended ones. The latter case so far gave the highest local field enhancement; however, configurations involving Bloch SEWs, guided mode resonances, and cavity resonances have also been shown to give significant enhancement when used to excite localized surface plasmons. With this strategy, field enhancement by more than an order of magnitude can be attained. Using this ultrahigh enhancement, the strong coupling experiments between molecules and the intense optical field will be possible and new devices may emerge from those new methodologies for ultrahigh sensitive sensing for environmental and medical applications, as well as for improved optoelectronic devices.


2020 ◽  
Vol 13 (6) ◽  
pp. 1-23
Author(s):  
WANG Hao-bing ◽  
◽  
TAO Jin ◽  
LV Jin-guang ◽  
MENG De-jia ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Mithun K P ◽  
Srabani Kar ◽  
Abinash Kumar ◽  
Victor Suvisesha Muthu Dharmaraj ◽  
Ravishankar Narayanan ◽  
...  

Collective excitation of Dirac plasmons in graphene and topological insulators have opened new possibilities of tunable plasmonic materials ranging from THz to mid-infrared regions. Using time resolved Optical Pump -...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qinyu Qian ◽  
Pengfei Liu ◽  
Li Fan ◽  
Liang Zhao ◽  
Chinhua Wang

AbstractWe report on a non-sharp-corner quarter wave plate (NCQW) within the single layer of only 8 nm thickness structured by the Ag hollow elliptical ring array, where the strong localized surface plasmons (LSP) resonances are excited. By manipulating the parameters of the hollow elliptical ring, the transmitted amplitude and phase of the two orthogonal components are well controlled. The phase difference of π/2 and amplitude ratio of 1 is realized simultaneously at the wavelength of 834 nm with the transmission of 0.46. The proposed NCQW also works well in an ultrawide wavelength band of 110 nm, which suggests an efficient way of exciting LSP resonances and designing wave plates, and provides a great potential for advanced nanophotonic devices and integrated photonic systems.


Sign in / Sign up

Export Citation Format

Share Document