Electrospray Printing of Polyimide Films Using Passive Material Focusing

Author(s):  
Bryce J. Kingsley ◽  
Emma E. Pawliczak ◽  
Thomas R. Hurley ◽  
Paul R. Chiarot
Keyword(s):  
Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
Wei-Wei Chen ◽  
Jui-Wen Pan ◽  
Shie-Chang Jeng
Keyword(s):  

2020 ◽  
Vol 62 (2) ◽  
pp. 196-204
Author(s):  
I. V. Gofman ◽  
A. L. Nikolaeva ◽  
I. V. Abalov ◽  
E. M. Ivan’kova ◽  
I. V. Kuntzman ◽  
...  

2020 ◽  
Author(s):  
Almaz Kamalov ◽  
Margarita Borisova ◽  
Andrey Didenko ◽  
Gleb Vaganov ◽  
Vladimir Yudin

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1955
Author(s):  
Marco Cen-Puc ◽  
Andreas Schander ◽  
Minerva G. Vargas Gleason ◽  
Walter Lang

Polyimide films are currently of great interest for the development of flexible electronics and sensors. In order to ensure a proper integration with other materials and PI itself, some sort of surface modification is required. In this work, microwave oxygen plasma, reactive ion etching oxygen plasma, combination of KOH and HCl solutions, and polyethylenimine solution were used as surface treatments of PI films. Treatments were compared to find the best method to promote the adhesion between two polyimide films. The first selection of the treatment conditions for each method was based on changes in the contact angle with deionized water. Afterward, further qualitative (scratch test) and a quantitative adhesion assessment (peel test) were performed. Both scratch test and peel strength indicated that oxygen plasma treatment using reactive ion etching equipment is the most promising approach for promoting the adhesion between polyimide films.


2009 ◽  
Vol 1192 ◽  
Author(s):  
Luke M. Davis ◽  
Tyler S. Stukenbroeker ◽  
Christopher J. Abelt ◽  
Joseph L. Scott ◽  
Evguenia Orlova ◽  
...  

AbstractA straightforward ambient temperature route to the fabrication of surface silver-metallized polyimide films is described. Silver(I) trifluoromethane sulfonate and a polyimide, derived from 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and an equimolar amount of 4,4'-oxydianiline (ODA) and 3,5-diaminobenzoic acid (DABA), were dissolved together in dimethylacetamide. Silver(I)-doped films were prepared at thicknesses of 25-50 microns and depleted of solvent by evaporation. The silver(I)-containing films were then treated with aqueous reducing agents, which brought forth silvered films exhibiting conductivity on the order of bulk polycrystalline silver and good specular reflectivity.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2962
Author(s):  
Yifeng Mu ◽  
Rou Feng ◽  
Qibei Gong ◽  
Yuxuan Liu ◽  
Xijun Jiang ◽  
...  

A wearable electronic system constructed with multiple sensors with different functions to obtain multidimensional information is essential for making accurate assessments of a person’s condition, which is especially beneficial for applications in the areas of health monitoring, clinical diagnosis, and therapy. In this work, using polyimide films as substrates and Pt as the constituent material of serpentine structures, flexible temperature and angle sensors were designed that can be attached to the surface of an object or the human body for monitoring purposes. In these sensors, changes in temperature and bending angle are converted into variations in resistance through thermal resistance and strain effects with a sensitivity of 0.00204/°C for temperatures in the range of 25 to 100 °C and a sensitivity of 0.00015/° for bending angles in the range of 0° to 150°. With an appropriate layout design, two sensors were integrated to measure temperature and bending angles simultaneously in order to obtain decoupled, compensated, and more accurate information of temperature and angle. Finally, the system was tested by being attached to the surface of a knee joint, demonstrating its application potential in disease diagnosis, such as in arthritis assessment.


Sign in / Sign up

Export Citation Format

Share Document