scholarly journals Using Biomimetic Polymers in Place of Noncollagenous Proteins to Achieve Functional Remineralization of Dentin Tissues

2017 ◽  
Vol 3 (12) ◽  
pp. 3469-3479 ◽  
Author(s):  
Yung-Ching Chien ◽  
Jinhui Tao ◽  
Kuniko Saeki ◽  
Alexander F. Chin ◽  
Jolene L. Lau ◽  
...  
1974 ◽  
Vol 22 (2) ◽  
pp. 88-103 ◽  
Author(s):  
MARSHALL R. URIST ◽  
HISASHI IWATA ◽  
STUART D. BOYD ◽  
PETER L. CECCOTTI ◽  
MARLYS OKADA ◽  
...  

Data on physicochemical conditions leading to loss of the bone morphogenetic property of bone matrix in neutral buffer solutions support the concept of an enzymic control mechanism better than a chemical blocking reaction or denaturation. The loss is associated with release of 35S-labeled constituents and not prevented by ε-amino caproic acid, an inhibitor of cathepsins. The loss is also associated with release of 35S-cysteine-labeled protein; about 60% of the yield is sustained by the addition of only 3 mmoles/liter of iodoacetic acid. A latent period of about 12 hr, decreased by extraction of bone matrix with CaCl2, is characterized by release of protein polysaccharide and other noncollagenous proteins. Release of sialic acid from the bone matrix by neuraminidase at pH 7.4 has no effect upon bone yield. At 2°C, Tris-HCl buffer or ethylenediaminetetraacetic acid extracts noncollagenous proteins without loss of bone yield; at 37°C, pH 7.4, these solutions also activate endogenous enzymes and reduce bone yield. The component of bone matrix responsible for reduction in bone yield is separable from bone matrix by extraction with phosphate buffer, by catheptic digestion of bone matrix in acidic buffer solutions, by sequential chemical extraction of noncollagenous proteins with cold slightly acidic salt solutions or by extraction-denaturation with chloroform-methanol. Detergents neither extinguish nor denature the morphogenetic property but some solubilize or extract degradative enzymes; hexodecyl trimethyl ammonium bromide, at pH 5.0, is positively charged and extracts hydrophobic proteins, including part of the bone morphogenetic property. A special selection of sulfhydryl chemical inhibitors remarkably different from the selection inhibiting known enzymes preserves the bone morphogenetic property of bone matrix; p-chloromercuribenzoate preservation is reversible by chemical reactions with cysteine. Reduction in bone yield in phosphate buffer is not attributable to a chemical block because chloroform-methanol extraction of the agent does not restore bone yield and is not attributable to denaturation because bone yield sustained by p-chloromercuribenzoate is lost by chemical reactions with cysteine. An hypothetical insoluble bone morphogenetic protein (BMP) firmly bound to collagen is degraded by a soluble neutral proteinase (BMPase). Digestion of the hypothetical BMP occurs without loss of the 640-A electron micrographic image of bone collagen, resembles tryptic digestion and is more selective as well as physiologic in action.


1982 ◽  
Vol 92 (1) ◽  
pp. 227-230 ◽  
Author(s):  
J D Malone ◽  
S L Teitelbaum ◽  
G L Griffin ◽  
R M Senior ◽  
A J Kahn

The osteoclast, the multinucleated giant cell of bone, is derived from circulating blood cells, most likely monocytes. Evidence has accrued that is consistent with the hypothesis that the recruitment of monocytes for osteoclast development occurs by chemotaxis. In the present study, we have examined the chemotactic response of human peripheral blood monocytes and related polymorphonuclear leucocytes to three constituents of bone matrix: peptides from Type I collagen, alpha 2-HS glycoprotein, and osteocalcin (bone gla protein). The latter two substances are among the major noncollagenous proteins of bone and are uniquely associated with calcified connective tissue. In chemotaxis assays using modified Boyden chambers, Type I collagen peptides, alpha 2HS glycoprotein, and osteocalcin evoke a dose-dependent chemotactic response in human monocytes. No chemotaxis is observed on PMNs despite their ontogenetic relationship to monocytes and their documented sensitivity to a broad range of other chemical substances. Our observations are consistent with the view that osteoclast precursors (monocytes) are mobilized by chemotaxis, and suggest that the chemoattractants responsible for this activity are derived from the bone matrix or, in the case of collagen and osteocalcin; directly from the osteoblasts which produce them.


2018 ◽  
Author(s):  
Fu-Shuang Li ◽  
Pyae Phyo ◽  
Joseph Jacobowitz ◽  
Mei Hong ◽  
Jing-Ke Weng

Sporopollenin is a ubiquitous and extremely chemically inert biopolymer that constitutes the outer wall of all land-plant spores and pollen grains. Sporopollenin protects the vulnerable plant gametes against a wide range of environmental assaults, and is considered as a prerequisite for the migration of early plants onto land. Despite its importance, the chemical structure of plant sporopollenin has remained elusive. Using a newly developed thioacidolysis degradative method together with state-of-the-art solid-state NMR techniques, we determined the detailed molecular structure of pine sporopollenin. We show that pine sporopollenin is primarily composed of aliphatic-polyketide-derived polyvinyl alcohol units and 7-O-p-coumaroylated C16 aliphatic units, crosslinked through a distinctive m-dioxane moiety featuring an acetal. Naringenin was also identified as a minor component of pine sporopollenin. This discovery answers the long-standing question about the chemical makeup of plant sporopollenin, laying the foundation for future investigations of sporopollenin biosynthesis and for design of new biomimetic polymers with desirable inert properties.


1987 ◽  
Vol 1 (2) ◽  
pp. 191-195 ◽  
Author(s):  
K. Kawasaki ◽  
S. Shimoda ◽  
M. Fukae

In order to study changes in the enameloid matrix of the Sea Bream during the course of its development, we selected the developmental tooth germs of this fish as representative of three different developmental stages: "chalk-like", "cheese-like", and "soft" enameloid. The protein, calcium, and phosphate contents of each sample were analyzed. The changes of the total protein content in each sample suggest that a major part of the proteins decreased during maturation, although newly formed enameloid of the Sea Bream contains collagen and noncollagenous proteins. The existence of proteolytic activity was examined by placement of undemineralized cryostat sections of unfixed tooth germs on exposed and processed photographic films and then incubation for 30 min in a water-saturated atmosphere at 37°C. Proteolytic activity could be detected in the enameloid matrix, which appeared to be in a "cheese-like" stage. It is suggested that proteolytic enzymes play an important role in the removal of proteins during the maturation of enameloid, although the detailed mechanism of the process is still obscure.


1986 ◽  
Vol 40 ◽  
pp. 210
Author(s):  
Masahiro Yoshiyama ◽  
Yoshiharu Uno ◽  
Akitsugu Uchida ◽  
Hajime Ishida

Sign in / Sign up

Export Citation Format

Share Document