Mechanistic Studies of Styrene Production from Benzene and Ethylene Using [(η2-C2H4)2Rh(μ-OAc)]2 as Catalyst Precursor: Identification of a Bis-RhI Mono-CuII Complex As the Catalyst

ACS Catalysis ◽  
2021 ◽  
pp. 5688-5702
Author(s):  
Charles B. Musgrave ◽  
Weihao Zhu ◽  
Nathan Coutard ◽  
Jeffrey F. Ellena ◽  
Diane A. Dickie ◽  
...  
2017 ◽  
Vol 139 (4) ◽  
pp. 1485-1498 ◽  
Author(s):  
Benjamin A. Vaughan ◽  
Sarah K. Khani ◽  
J. Brannon Gary ◽  
James D. Kammert ◽  
Michael S. Webster-Gardiner ◽  
...  

2009 ◽  
Vol 87 (1) ◽  
pp. 264-271 ◽  
Author(s):  
Bo-Lin Lin ◽  
Jay A Labinger ◽  
John E Bercaw

Several pyridine-like ligands were found to improve Pd(OAc)2-catalyzed allylic oxidation of allylbenzene to cinnamyl acetate by p-benzoquinone in acetic acid. The best ligand examined, bipyrimidine, was used to identify the catalyst precursor for this system, (bipyrimidine)Pd(OAc)2, which was fully characterized. Mechanistic studies suggest the reaction takes place through disproportionation of (bipyrimidine)Pd(OAc)2 to form a bipyrimidine-bridged dimer, which reacts with olefin to form a PdII-olefin adduct, followed by allylic C–H activation to produce (η3-allyl)PdII species. The (η3-allyl)PdII intermediate undergoes a reversible acetate attack to generate a Pd0-(allyl acetate) adduct, which subsequently reacts with p-benzoquinone to release allyl acetate and regenerate (bipyrimidine)Pd(OAc)2. No KIE is observed for the competition experiment between allylbenzene-d0 and allylbenzene-d5 (CD2=CDCD2C6H5), suggesting that allylic C–H activation is not rate-determining. Catalytic allylic acetoxylations of other terminal olefins as well as cyclohexene were also effected by (bipyrimidine)Pd(OAc)2.Key words: olefin, palladium catalysis, allylic C–H oxidation, p-benzoquinone, bipyrimidine.


2016 ◽  
Vol 228 (06/07) ◽  
Author(s):  
WP Roos ◽  
M Eich ◽  
S Quiros ◽  
AV Knizhnik ◽  
T Nikolova ◽  
...  

Author(s):  
Jack Rowbotham ◽  
Oliver Lenz ◽  
Holly Reeve ◽  
Kylie Vincent

<p></p><p>Chemicals labelled with the heavy hydrogen isotope deuterium (<sup>2</sup>H) have long been used in chemical and biochemical mechanistic studies, spectroscopy, and as analytical tracers. More recently, demonstration of selectively deuterated drug candidates that exhibit advantageous pharmacological traits has spurred innovations in metal-catalysed <sup>2</sup>H insertion at targeted sites, but asymmetric deuteration remains a key challenge. Here we demonstrate an easy-to-implement biocatalytic deuteration strategy, achieving high chemo-, enantio- and isotopic selectivity, requiring only <sup>2</sup>H<sub>2</sub>O (D<sub>2</sub>O) and unlabelled dihydrogen under ambient conditions. The vast library of enzymes established for NADH-dependent C=O, C=C, and C=N bond reductions have yet to appear in the toolbox of commonly employed <sup>2</sup>H-labelling techniques due to requirements for suitable deuterated reducing equivalents. By facilitating transfer of deuterium atoms from <sup>2</sup>H<sub>2</sub>O solvent to NAD<sup>+</sup>, with H<sub>2</sub> gas as a clean reductant, we open up biocatalysis for asymmetric reductive deuteration as part of a synthetic pathway or in late stage functionalisation. We demonstrate enantioselective deuteration via ketone and alkene reductions and reductive amination, as well as exquisite chemo-control for deuteration of compounds with multiple unsaturated sites.</p><p></p>


2018 ◽  
Author(s):  
Sandepan Maity ◽  
Robert Flowers

Despite the broad utility and application of SmI<sub>2</sub>in synthesis, the reagent is used in stoichiometric amounts and has a high molecular weight, resulting in a large amount of material being used for reactions requiring one or more equivalents of electrons. We report mechanistic studies on catalytic reactions of Sm(II) employing a terminal magnesium reductant and trimethyl silyl chloride in concert with a non-coordinating proton donor source. Reactions using this approach permitted reductions with as little as 1 mol% Sm. The mechanistic approach enabled catalysis employing HMPA as a ligand, facilitating the development of catalytic Sm(II) 5-<i>exo</i>-<i>trig </i>ketyl olefin cyclization reactions.


2019 ◽  
Author(s):  
Andrew Romine ◽  
Kin Yang ◽  
Malkanthi Karunananda ◽  
Jason Chen ◽  
Keary Engle

A weakly coordinating monodentate heteroaryl thioether directing group has been developed for use in Pd(II) catalysis to orchestrate key elementary steps in the catalytic cycle that require conformational flexibility in a manner that is difficult to accomplish with traditional strongly coordinating directing groups. This benzothiazole thioether, (BT)S, directing group can be used to promote oxidative Heck reactivity of internal alkenes providing a wide range of products in moderate to high yields. To demonstrate the broad applicability of this directing group, arene C–H olefination was also successfully developed. Reaction progress kinetic analysis provides insights into the role of the directing group in each reaction, which is supplemented with computational data for the oxidative Heck reaction. Furthermore, this (BT)S directing group can be transformed into a number of synthetically useful functional groups, including a sulfone for Julia olefination, allowing it to serve as a “masked olefin” directing group in synthetic planning. In order to demonstrate this synthetic utility, natural products (+)-salvianolic acid A and salvianolic acid F are formally synthesized using the (BT)S directed C–H olefination as the key step.


2019 ◽  
Author(s):  
Caleb Karmel ◽  
Zhewei Chen ◽  
John Hartwig

We report a new system for the silylation of aryl C-H bonds. The combination of [Ir(cod)(OMe)]<sub>2</sub> and 2,9-Me<sub>2</sub>-phenanthroline (2,9-Me<sub>2</sub>phen) catalyzes the silylation of arenes at lower temperatures and with faster rates than those reported previously, when the hydrogen byproduct is removed, and with high functional group tolerance and regioselectivity. Inhibition of reactions by the H<sub>2</sub> byproduct is shown to limit the silylation of aryl C-H bonds in the presence of the most active catalysts, thereby masking their high activity. Analysis of initial rates uncovered the high reactivity of the catalyst containing the sterically hindered 2,9-Me<sub>2</sub>phen ligand but accompanying rapid inhibition by hydrogen. With this catalyst, under a flow of nitrogen to remove hydrogen, electron-rich arenes, including those containing sensitive functional groups, undergo silylation in high yield for the first time, and arenes that underwent silylation with prior catalysts react over much shorter times with lower catalyst loadings. The synthetic value of this methodology is demonstrated by the preparation of key intermediates in the synthesis of medicinally important compounds in concise sequences comprising silylation and functionalization. Mechanistic studies demonstrate that the cleavage of the aryl C-H bond is reversible and that the higher rates observed with the 2,9-Me<sub>2</sub>phen ligand is due to a more thermodynamically favorable oxidative addition of aryl C-H bonds.


Sign in / Sign up

Export Citation Format

Share Document