New Theoretical Insights into the Atmospheric Chemistry of Methyl Chavicol Initiated by OH and NO3 Radicals

Author(s):  
Shuai Tian ◽  
Juan Dang
2013 ◽  
Vol 13 (12) ◽  
pp. 33105-33144
Author(s):  
K. L. Pereira ◽  
J. F. Hamilton ◽  
A. R. Rickard ◽  
W. J. Bloss ◽  
M. S. Alam ◽  
...  

Abstract. The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18–29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.


2008 ◽  
Vol 8 (6) ◽  
pp. 19707-19741 ◽  
Author(s):  
N. C. Bouvier-Brown ◽  
A. H. Goldstein ◽  
D. R. Worton ◽  
D. M. Matross ◽  
J. B. Gilman ◽  
...  

Abstract. We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) – and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.


2009 ◽  
Vol 9 (6) ◽  
pp. 2061-2074 ◽  
Author(s):  
N. C. Bouvier-Brown ◽  
A. H. Goldstein ◽  
D. R. Worton ◽  
D. M. Matross ◽  
J. B. Gilman ◽  
...  

Abstract. We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) – and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1 h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.


2014 ◽  
Vol 14 (11) ◽  
pp. 5349-5368 ◽  
Author(s):  
K. L. Pereira ◽  
J. F. Hamilton ◽  
A. R. Rickard ◽  
W. J. Bloss ◽  
M. S. Alam ◽  
...  

Abstract. The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound (VOC) that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high-performance liquid chromatography mass spectrometry (HPLC-ITMS), high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18 and 29% for an initial VOC mixing ratio of 212 and 460 ppbv (parts per billion by volume) respectively; using a VOC:NOx ratio of ~5:1. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high-resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro-functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O:C ratios, where functionalisation rather than fragmentation is mainly observed as a result of the stability of the ring. The SOA species observed can be characterised as semi-volatile to low-volatility oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.


2003 ◽  
Vol 68 (12) ◽  
pp. 2297-2308 ◽  
Author(s):  
Max Mühlhäuser ◽  
Melanie Schnell ◽  
Sigrid D. Peyerimhoff

Multireference configuration interaction calculations are carried out for ground and excited states of trichloromethanol to investigate two important photofragmentation processes relevant to atmospheric chemistry. For CCl3OH five low-lying excited states in the energy range between 6.1 and 7.1 eV are found to be highly repulsive for C-Cl elongation leading to Cl2COH (X2A') and Cl (X2P). Photodissociation along C-O cleavage resulting in Cl3C (X2A') and OH (X2Π) has to overcome a barrier of about 0.8 eV (13A'', 11A'') and 1.2 eV (13A') because the low-lying excited states 11A'', 13A' and 13A'' become repulsive only after elongating the C-O bond by about 0.3 Å.


Author(s):  
Rajendran Senthoorraja ◽  
Kesavan Subaharan ◽  
Sowmya Manjunath ◽  
Vppalayam Shanmugam Pragadheesh ◽  
Nandagopal Bakthavatsalam ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 680
Author(s):  
Chris D. Boone ◽  
Johnathan Steffen ◽  
Jeff Crouse ◽  
Peter F. Bernath

Line-of-sight wind profiles are derived from Doppler shifts in infrared solar occultation measurements from the Atmospheric Chemistry Experiment Fourier transform spectrometers (ACE-FTS), the primary instrument on SCISAT, a satellite-based mission for monitoring the Earth’s atmosphere. Comparisons suggest a possible eastward bias from 20 m/s to 30 m/s in ACE-FTS results above 80 km relative to some datasets but no persistent bias relative to other datasets. For instruments operating in a limb geometry, looking through a wide range of altitudes, smearing of the Doppler effect along the line of sight can impact the measured signal, particularly for saturated absorption lines. Implications of Doppler effect smearing are investigated for forward model calculations and volume mixing ratio retrievals. Effects are generally small enough to be safely ignored, except for molecules having a large overhang in their volume mixing ratio profile, such as carbon monoxide.


Sign in / Sign up

Export Citation Format

Share Document