scholarly journals Time-Resolved Scanning Ion Conductance Microscopy for Three-Dimensional Tracking of Nanoscale Cell Surface Dynamics

ACS Nano ◽  
2021 ◽  
Author(s):  
Samuel M. Leitao ◽  
Barney Drake ◽  
Katarina Pinjusic ◽  
Xavier Pierrat ◽  
Vytautas Navikas ◽  
...  
2021 ◽  
Author(s):  
Samuel M. Leitao ◽  
Barney Drake ◽  
Katarina Pinjusic ◽  
Xavier Pierrat ◽  
Vytautas Navikas ◽  
...  

Understanding cellular function requires high-resolution information about cellular structures as well as their evolution over time. The major challenge is to obtain three-dimensional (3D) information at nanometer resolution without affecting the viability of the cells and avoiding interference with the process. Here, we develop a scanning ion conductance microscope (SICM) for high-speed and long term imaging that can resolve spatiotemporally diverse processes on the cell membrane. We tracked dynamic changes in live cell morphology with nanometer details and temporal ranges of sub-second to days, imagining diverse processes ranging from endocytosis, micropinocytosis, and mitosis, to bacterial infection and cell differentiation in cancer cells. This technique enables a detailed look at membrane events and may offer insights into cell-cell interactions for infection, immunology, and cancer research.


Hyomen Kagaku ◽  
2015 ◽  
Vol 36 (6) ◽  
pp. 313-318 ◽  
Author(s):  
Hiroki IDA ◽  
Yasufumi TAKAHASHI ◽  
Hitoshi SHIKU ◽  
Tomokazu MATSUE

Author(s):  
Ashley Page ◽  
David Perry ◽  
Patrick R. Unwin

Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science.


2014 ◽  
Vol 82 (5) ◽  
pp. 331-334 ◽  
Author(s):  
Yasufumi TAKAHASHI ◽  
Komachi ITO ◽  
Xiongwei WANG ◽  
Yoshiharu MATSUMAE ◽  
Hirokazu KOMAKI ◽  
...  

Author(s):  
Robert D. Nelson ◽  
Sharon R. Hasslen ◽  
Stanley L. Erlandsen

Receptors are commonly defined in terms of number per cell, affinity for ligand, chemical structure, mode of attachment to the cell surface, and mechanism of signal transduction. We propose to show that knowledge of spatial distribution of receptors on the cell surface can provide additional clues to their function and components of functional control.L-selectin and Mac-1 denote two receptor populations on the neutrophil surface that mediate neutrophil-endothelial cell adherence interactions and provide for targeting of neutrophil recruitment to sites of inflammation. We have studied the spatial distributions of these receptors using LVSEM and backscatter imaging of isolated human neutrophils stained with mouse anti-receptor (primary) antibody and goat anti-mouse (secondary) antibody conjugated to 12 nm colloidal gold. This combination of techniques provides for three-dimensional analysis of the expression of these receptors on different surface membrane domains of the neutrophil: the ruffles and microvilli that project from the cell surface, and the cell body between these projecting structures.


2021 ◽  
Vol 27 (S1) ◽  
pp. 500-502
Author(s):  
Oleg Suchalko ◽  
Roman Timoshenko ◽  
Alexander Vaneev ◽  
Vasilii Kolmogorov ◽  
Nikita Savin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document