Active Sites Implanted Carbon Cages in Core–Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction

ACS Nano ◽  
2015 ◽  
Vol 10 (1) ◽  
pp. 684-694 ◽  
Author(s):  
Huabin Zhang ◽  
Zuju Ma ◽  
Jingjing Duan ◽  
Huimin Liu ◽  
Guigao Liu ◽  
...  
2016 ◽  
Vol 9 (3) ◽  
pp. 850-856 ◽  
Author(s):  
Donghwan Yoon ◽  
Bora Seo ◽  
Jaeyoung Lee ◽  
Kyoung Sik Nam ◽  
Byeongyoon Kim ◽  
...  

Hollow Rh2S3 hexagonal nanoprisms, prepared by one-step formation of core–shell nanoprisms followed by the etching of a core, exhibit very high catalytic activity and excellent stability toward hydrogen evolution reaction.


Author(s):  
Peidong Shi ◽  
Yu Zhang ◽  
Guanglu Zhang ◽  
Xiaojuan Zhu ◽  
Shao-Hua Wang ◽  
...  

Highly active, durable and cost-effective catalysts toward hydrogen evolution reaction (HER) are crucial for widespread use of electrochemical water splitting in hydrogen production. Herein, a hierarchical core-shell nanorod array comprising...


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1060
Author(s):  
Sajjad Hussain ◽  
Dhanasekaran Vikraman ◽  
Manzoor Hussain ◽  
Hyun-Seok Kim ◽  
Jongwan Jung

Transition metal dichalcogenides (TMDs) are the auspicious inexpensive electrocatalysts for the hydrogen evolution reaction (HER) which has been broadly studied owing to their remarkable enactment, however the drought of factors understanding were highly influenced to hinder their electrocatalytic behavior. Recently, transition metal carbide (TMC) has also emerged as an attractive electrode material due to their excellent ionic and electronic transport behavior. In this work, Mo2C@WS2 hybrids have been fabricated through a simple chemical reaction method. Constructed heterostructure electrocatalyts presented the small Tafel slope of 59 and 95 mV per decade and low overpotential of 93 mV and 98 @10 mA·cm−2 for HER in acidic and alkaline solution, respectively. In addition, 24-h robust stability with the improved interfacial interaction demonstrated the suitability of hybrid electrocatalyst for HER than their pure form of Mo2C and WS2 structures. The derived outcomes describe the generated abundant active sites and conductivity enhancement in TMC/TMD heterostructure along with the weaken ion/electron diffusion resistance for efficient energy generation applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinzhe Li ◽  
Yiyun Fang ◽  
Jun Wang ◽  
Hanyan Fang ◽  
Shibo Xi ◽  
...  

AbstractExposing and stabilizing undercoordinated platinum (Pt) sites and therefore optimizing their adsorption to reactive intermediates offers a desirable strategy to develop highly efficient Pt-based electrocatalysts. However, preparation of atomically controllable Pt-based model catalysts to understand the correlation between electronic structure, adsorption energy, and catalytic properties of atomic Pt sites is still challenging. Herein we report the atomically thin two-dimensional PtTe2 nanosheets with well-dispersed single atomic Te vacancies (Te-SAVs) and atomically well-defined undercoordinated Pt sites as a model electrocatalyst. A controlled thermal treatment drives the migration of the Te-SAVs to form thermodynamically stabilized, ordered Te-SAV clusters, which decreases both the density of states of undercoordinated Pt sites around the Fermi level and the interacting orbital volume of Pt sites. As a result, the binding strength of atomically defined Pt active sites to H intermediates is effectively reduced, which renders PtTe2 nanosheets highly active and stable in hydrogen evolution reaction.


2020 ◽  
Vol 8 (44) ◽  
pp. 23323-23329
Author(s):  
Jing Hu ◽  
Siwei Li ◽  
Yuzhi Li ◽  
Jing Wang ◽  
Yunchen Du ◽  
...  

Crystalline–amorphous Ni–Ni(OH)2 core–shell assembled nanosheets exhibit outstanding electrocatalytic activity and stability for hydrogen evolution under alkaline conditions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 662 ◽  
Author(s):  
Guangsheng Liu ◽  
Kunyapat Thummavichai ◽  
Xuefeng Lv ◽  
Wenting Chen ◽  
Tingjun Lin ◽  
...  

Molybdenum disulfide (MoS2) has been universally demonstrated to be an effective electrocatalytic catalyst for hydrogen evolution reaction (HER). However, the low conductivity, few active sites and poor stability of MoS2-based electrocatalysts hinder its hydrogen evolution performance in a wide pH range. The introduction of other metal phases and carbon materials can create rich interfaces and defects to enhance the activity and stability of the catalyst. Herein, a new defect-rich heterogeneous ternary nanocomposite consisted of MoS2, NiS and reduced graphene oxide (rGO) are synthesized using ultrathin αNi(OH)2 nanowires as the nickel source. The MoS2/rGO/NiS-5 of optimal formulation in 0.5 M H2SO4, 1.0 M KOH and 1.0 M PBS only requires 152, 169 and 209 mV of overpotential to achieve a current density of 10 mA cm−2 (denoted as η10), respectively. The excellent HER performance of the MoS2/rGO/NiS-5 electrocatalyst can be ascribed to the synergistic effect of abundant heterogeneous interfaces in MoS2/rGO/NiS, expanded interlayer spacings, and the addition of high conductivity graphene oxide. The method reported here can provide a new idea for catalyst with Ni-Mo heterojunction, pH-universal and inexpensive hydrogen evolution reaction electrocatalyst.


Sign in / Sign up

Export Citation Format

Share Document