scholarly journals Understanding the Behavior of Radioactive Cesium during the Incineration of Contaminated Municipal Solid Waste and Sewage Sludge by Thermodynamic Equilibrium Calculation

ACS Omega ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 15086-15099 ◽  
Author(s):  
Kazuko Yui ◽  
Hidetoshi Kuramochi ◽  
Masahiro Osako
Author(s):  
Seongmin Kang ◽  
Joonyoung Roh ◽  
Eui-Chan Jeon

In the case of sewage sludge, as direct landfilling was recently prohibited, it is treated through incineration. Among the air pollutants discharged through the incineration of sewage sludge, NOx and SOx are considered secondary substances of PM2.5 and are being managed accordingly. However, NH3, another of the secondary substances of PM2.5, is not well managed, and the amount of NH3 discharged from sewage sludge incineration facilities has not been calculated. Therefore, in this study, we sought to determine whether NH3 is discharged in the exhaust gas of a sewage sludge incineration facility, and, when discharged, the NH3 emission factor was calculated, and the necessity of the development of the emission factor was reviewed. As a result of the study, it was confirmed that the amount of NH3 discharged from the sewage sludge incineration facility was 0.04 to 4.47 ppm, and the emission factor was calculated as 0.002 kg NH3/ton. The NH3 emission factor was compared with the NH3 emission factor of municipal solid waste proposed by EMEP/EEA (European Monitoring and Evaluation Programme/European Environment Agency) because the NH3 emission factor of the sewage sludge incineration facility had not been previously determined. As a result of the comparison, the NH3 emission factor of EMEP/EEA was similar to that of municipal solid waste, confirming the necessity of developing the NH3 emission factor of the sewage sludge incineration facility. In addition, the evaluation of the uncertainty of the additionally calculated NH3 emission factor was conducted quantitatively and the uncertainty range was presented for reference. In the future, it is necessary to improve the reliability of the NH3 emission factor of sewage sludge incineration facilities by performing additional analysis with statistical representation. In addition, the development of NH3 emission factors for industrial waste incineration facilities should be undertaken.


2018 ◽  
Vol 250 ◽  
pp. 853-859 ◽  
Author(s):  
Difang Zhang ◽  
Wenhai Luo ◽  
Yun Li ◽  
Guoying Wang ◽  
Guoxue Li

2020 ◽  
Vol 10 (17) ◽  
pp. 6075
Author(s):  
Ahmad Assi ◽  
Fabjola Bilo ◽  
Alessandra Zanoletti ◽  
Laura Borgese ◽  
Laura Eleonora Depero ◽  
...  

This study presents an innovative stabilization method of fly ash derived from co-combustion of municipal solid waste and sewage sludge. Bottom ash, obtained from the same process, is used as a stabilizing agent. The stabilization method involved the use of two other components—flue gas desulfurization residues and coal fly ash. Leaching tests were performed on stabilized samples, aged in a laboratory at different times. The results reveal the reduction of the concentrations of heavy metals, particularly Zn and Pb about two orders of magnitude lower with respect to fly ash. The immobilization of heavy metals on the solid material mainly depends on three factors—the amount of used ash, the concentrations of Zn and Pb in as-received fly ash and the pH of the solution of the final materials. The inert powder, obtained after the stabilization, is a new eco-material, that is promising to be used as filler in new sustainable composite materials.


1996 ◽  
Vol 16 (1-4) ◽  
pp. 265-279 ◽  
Author(s):  
Don Augenstein ◽  
Donald L. Wise ◽  
Nghiem Xuan Dat ◽  
Nguyen Duc Khien

2018 ◽  
Vol 77 ◽  
pp. 333-340 ◽  
Author(s):  
Difang Zhang ◽  
Wenhai Luo ◽  
Jing Yuan ◽  
Guoxue Li

Sign in / Sign up

Export Citation Format

Share Document