scholarly journals Enhanced Enzymatic Hydrolysis of Corncob by Synthesized Enzyme-Mimetic Magnetic Solid Acid Pretreatment in an Aqueous Phase

ACS Omega ◽  
2019 ◽  
Vol 4 (18) ◽  
pp. 17864-17873 ◽  
Author(s):  
Qing Xu ◽  
Wei Yang ◽  
Guifeng Liu ◽  
Cuiyi Liang ◽  
Si Lu ◽  
...  
ChemSusChem ◽  
2010 ◽  
Vol 4 (1) ◽  
pp. 55-58 ◽  
Author(s):  
Da-ming Lai ◽  
Li Deng ◽  
Jiang Li ◽  
Bing Liao ◽  
Qing-xiang Guo ◽  
...  

2011 ◽  
Vol 4 (9) ◽  
pp. 3552 ◽  
Author(s):  
Da-ming Lai ◽  
Li Deng ◽  
Qing-xiang Guo ◽  
Yao Fu

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 245 ◽  
Author(s):  
Yikui Zhu ◽  
Jiawei Huang ◽  
Shaolong Sun ◽  
Aimin Wu ◽  
Huiling Li

Lignocellulose is a widely used renewable energy source on the Earth that is rich in carbon skeletons. The catalytic hydrolysis of lignocellulose over magnetic solid acid is an efficient pathway for the conversion of biomass into fuels and chemicals. In this study, a bamboo-derived carbonaceous magnetic solid acid catalyst was synthesized by FeCl3 impregnation, followed by carbonization and –SO3H group functionalization. The prepared catalyst was further subjected as the solid acid catalyst for the catalytic conversion of corncob polysaccharides into reducing sugars. The results showed that the as-prepared magnetic solid acid contained –SO3H, –COOH, and polycyclic aromatic, and presented good catalytic performance for the hydrolysis of corncob in the aqueous phase. The concentration of H+ was in the range of 0.6487 to 2.3204 mmol/g. Dilute acid and alkali pretreatments of raw material can greatly improve the catalytic activity of bamboo-derived carbonaceous magnetic solid acid. Using the catalyst prepared by 0.25% H2SO4-pretreated bamboo, 6417.5 mg/L of reducing sugars corresponding to 37.17% carbohydrates conversion could be obtained under the reaction conditions of 120 °C for 30 min.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lin Dai ◽  
Tian Huang ◽  
Kankan Jiang ◽  
Xin Zhou ◽  
Yong Xu

Abstract Background Pretreatment is the key step for utilizing lignocellulosic biomass, which can extract cellulose from lignin and disrupt its recalcitrant crystalline structure to allow much more effective enzymatic hydrolysis; and organic acids pretreatment with dual benefic for generating xylooligosaccharides and boosting enzymatic hydrolysis has been widely used in adding values to lignocellulose materials. In this work, furoic acid, a novel recyclable organic acid as catalyst, was employed to pretreat sugarcane bagasse to recover the xylooligosaccharides fraction from hemicellulose and boost the subsequent cellulose saccharification. Results The FA-assisted hydrolysis of sugarcane bagasse using 3% furoic acid at 170 °C for 15 min resulted in the highest xylooligosaccharides yield of 45.6%; subsequently, 83.1 g/L of glucose was harvested by a fed-batch operation with a solid loading of 15%. Overall, a total of 120 g of xylooligosaccharides and 335 g glucose could be collected from 1000 g sugarcane bagasse starting from the furoic acid pretreatment. Furthermore, furoic acid can be easily recovered by cooling crystallization. Conclusion This work put forward a novel furoic acid pretreatment method to convert sugarcane bagasse into xylooligosaccharides and glucose, which provides a strategy that the sugar and nutraceutical industries can be used to reduce the production cost. The developed process showed that the yields of xylooligosaccharides and byproducts were controllable by shortening the reaction time; meanwhile, the recyclability of furoic acid also can potentially reduce the pretreatment cost and potentially replace the traditional mineral acids pretreatment.


2018 ◽  
Vol 34 (5) ◽  
pp. 285-291 ◽  
Author(s):  
Taiping Xie ◽  
Lianying Huang ◽  
Chenglun Liu ◽  
Longjun Xu

2021 ◽  
Author(s):  
Wenqian Lin ◽  
Jinlai Yang ◽  
Yayue Zheng ◽  
Caoxing Huang ◽  
Qiang Yong

Abstract Background: During dilute acid pretreatment, pseudo lignin and lignin form droplets which deposit on the surface of lignocellulose, and further inhibit its enzymatic hydrolysis. However, how this lignin interacts with cellulase enzymes and then affects enzymatic hydrolysis is still unknown. In this work, different fractions of surface lignin (SL) obtained from dilute acid pretreated bamboo residues (DAP-BR) were extracted by various organic reagents and the residual lignin in extracted DAP-BR was obtained by milled wood lignin (MWL) method. All the obtained lignin fractions from DAP-BR were used to investigate the interaction mechanism between lignin and cellulase using surface plasmon resonance (SPR) technology in order to understand how they affect enzymatic hydrolysisResults: Results showed that removing surface lignin significantly decrease the enzymatic hydrolysis of DAP-BR from 36.5% to 18.6%. The addition of MWL samples to Avicel decreased enzymatic hydrolysis of Avicel, while different SL samples showed a slight increase to its enzymatic digestibility. Due to the higher molecular weight and hydrophobicity of MWL samples versus the SL samples, stronger affinity for MWL (KD = 6.8-24.7 nM) was found versus that of SL (KD = 39.4-52.6 nM) by SPR analysis. The affinity constant of all tested lignin had good correlations (R2>0.6) with their effects on enzymatic digestibility of extracted DAP-BR and Avicel.Conclusions: This work reveals that the surface lignin on DAP-BR is necessary towards maintaining enzyme digestibility levels, and its removal has a negative impact on the substrate’s digestibility.


2020 ◽  
Author(s):  
Lin Dai ◽  
Tian Huang ◽  
Kankan Jiang ◽  
Xin Zhou ◽  
Yong Xu

Abstract Background: Pretreatment is the key step for utilizing lignocellulosic biomass, which can extract cellulose from lignin and disrupt its recalcitrant crystalline structure to allow much more effective enzymatic hydrolysis; and organic acids pretreatment with dual benefic for generating xylooligosaccharides and boosting enzymatic hydrolysis has been widely used in adding values to lignocellulose materials. In this work, furoic acid, a novel recyclable organic acid as catalyst, was employed to pretreat sugarcane bagasse to recover the xylooligosaccharides fraction from hemicellulose and boost the subsequent cellulose saccharification. Results: The FA-assisted hydrolysis of sugarcane bagasse using 3% furoic acid at 170 oC for 15 min resulted in the highest xylooligosaccharides yield of 45.6%; subsequently, 83.1 g/L of glucose was harvested by a fed-batch operation with a solid loading of 15%. Overall, a total of 120 g of xylooligosaccharides and 335 g glucose could be collected from 1000 g sugarcane bagasse starting from the furoic acid pretreatment. Furthermore, furoic acid can be easily recovered by cooling crystallization.Conclusion: This work put forward a novel furoic acid pretreatment method to convert sugarcane bagasse into xylooligosaccharides and glucose, which provides a strategy that the sugar and nutraceutical industries can be used to reduce the production cost. The developed process showed that the yields of xylooligosaccharides and byproducts were controllable by shortening the reaction time; meanwhile, the recyclability of furoic acid also can potentially reduce the pretreatment cost and potentially replace the traditional mineral acids pretreatment.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Robinson Timung ◽  
Narendra Naik Deshavath ◽  
Vaibhav V. Goud ◽  
Venkata V. Dasu

This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction) and sugarcane bagasse on total reducing sugar (TRS) yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min), maximum TRS obtained was 452.27 mg·g−1and 487.50 mg·g−1for bagasse and citronella, respectively. Enzymatic hydrolysis of the pretreated biomass usingTrichoderma reesei26291 showed maximum TRS yield of 226.99 mg·g−1for citronella and 282.85 mg·g−1for bagasse at 10 FPU, 50°C, and 48 hr. The maximum crystallinity index (CI) of bagasse and citronella after acid pretreatment obtained from X-ray diffraction analysis was 64.41% and 56.18%, respectively. Decreased CI after enzymatic hydrolysis process to 37.28% and 34.16% for bagasse and citronella, respectively, revealed effective conversion of crystalline cellulose to glucose. SEM analysis of the untreated and treated biomass revealed significant hydrolysis of holocellulose and disruption of lignin.


Sign in / Sign up

Export Citation Format

Share Document