A Metal Ion-Controlled Molecular “Open Bridge” Detecting Oxidative Stress-Disrupted Apoptotic Signaling in Pediatric Neuroblastoma

ACS Sensors ◽  
2021 ◽  
Author(s):  
Lei Zhou ◽  
Yujie Han ◽  
Lili Kang ◽  
Zhongtao Gai ◽  
Xiaoying Li ◽  
...  
Author(s):  
Stephanie Probst ◽  
Johannes Fels ◽  
Bettina Scharner ◽  
Natascha A. Wolff ◽  
Eleni Roussa ◽  
...  

AbstractThe liver hormone hepcidin regulates systemic iron homeostasis. Hepcidin is also expressed by the kidney, but exclusively in distal nephron segments. Several studies suggest hepcidin protects against kidney damage involving Fe2+ overload. The nephrotoxic non-essential metal ion Cd2+ can displace Fe2+ from cellular biomolecules, causing oxidative stress and cell death. The role of hepcidin in Fe2+ and Cd2+ toxicity was assessed in mouse renal cortical [mCCD(cl.1)] and inner medullary [mIMCD3] collecting duct cell lines. Cells were exposed to equipotent Cd2+ (0.5–5 μmol/l) and/or Fe2+ (50–100 μmol/l) for 4–24 h. Hepcidin (Hamp1) was transiently silenced by RNAi or overexpressed by plasmid transfection. Hepcidin or catalase expression were evaluated by RT-PCR, qPCR, immunoblotting or immunofluorescence microscopy, and cell fate by MTT, apoptosis and necrosis assays. Reactive oxygen species (ROS) were detected using CellROX™ Green and catalase activity by fluorometry. Hepcidin upregulation protected against Fe2+-induced mIMCD3 cell death by increasing catalase activity and reducing ROS, but exacerbated Cd2+-induced catalase dysfunction, increasing ROS and cell death. Opposite effects were observed with Hamp1 siRNA. Similar to Hamp1 silencing, increased intracellular Fe2+ prevented Cd2+ damage, ROS formation and catalase disruption whereas chelation of intracellular Fe2+ with desferrioxamine augmented Cd2+ damage, corresponding to hepcidin upregulation. Comparable effects were observed in mCCD(cl.1) cells, indicating equivalent functions of renal hepcidin in different collecting duct segments. In conclusion, hepcidin likely binds Fe2+, but not Cd2+. Because Fe2+ and Cd2+ compete for functional binding sites in proteins, hepcidin affects their free metal ion pools and differentially impacts downstream processes and cell fate.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 59-59
Author(s):  
Marie-France Palin ◽  
Jérôme Lapointe ◽  
Claude Gariépy ◽  
Danièle Beaudry ◽  
Claudia Kalbe

Abstract Carnosine (β-alanyl-L-histidine) is a molecule naturally and exclusively present in muscle food with the highest concentrations found in skeletal muscles and brain of the animal. Among its numerous biochemical properties, carnosine has antioxidant activity which include metal ion chelation and free radical scavenging. We have recently reported that high muscle carnosine content in pig is associated with better meat quality. Moreover, supplementing pigs with β-alanine reduced oxidative damage to Longissimus muscle (LM) lipids and proteins. Among previously reported antioxidant activities, carnosine was found to limit the production of reactive oxygen species (ROS) and increase antioxidant enzyme activities. However, these studies were mainly conducted in rodents and cell lines and mechanisms in play remain to be characterized. To determine the effect of carnosine in preventing oxidative damage and characterize the mechanisms in play, we have undertaken experiments using the progeny (myoblasts) of satellite cells isolated from the LM of newborn piglets. Cells were treated with carnosine (0, 10, 25 and 50 mM) for 48 h and were then either collected immediately or treated with H2O2 (0.3 mM, 1 h) to induce an oxidative stress. Our results showed that carnosine prevents oxidative stress through the reduction of total intracellular ROS and by modulating the antioxidant system in myoblasts.Carnosine increased the mRNA abundance of NEF2L2, a transcription factor activated by oxidative stress, and several of its downstream regulated antioxidant genes. Western blot analyses further suggest that the protective effect of carnosine on H2O2-induced oxidative stress is mediated through the p38 MAPK intracellular pathway. Finally, the addition of carnosine to H2O2-treated myoblasts increased the basal cellular oxygen consumption rate (OCR), the ATP-linked OCR and proton leaks, thus suggesting an effect of carnosine on mitochondrial functions. Taken together, these findings demonstrate the important role of carnosine in preventing oxidative damage in porcine muscle cells.


2011 ◽  
Vol 27 (8) ◽  
pp. 871-877 ◽  
Author(s):  
Naira Baregamian ◽  
Jun Song ◽  
John Papaconstantinou ◽  
Hal K. Hawkins ◽  
B. Mark Evers ◽  
...  

2006 ◽  
Vol 188 (14) ◽  
pp. 5033-5044 ◽  
Author(s):  
Elizabeth Rolerson ◽  
Adam Swick ◽  
Lindsay Newlon ◽  
Cameron Palmer ◽  
Yong Pan ◽  
...  

ABSTRACT Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease.


Sign in / Sign up

Export Citation Format

Share Document