scholarly journals Correction to Insight into the Catalytic Effects of Open Metal Sites in Metal–Organic Frameworks on Hydride Dehydrogenation via Nanoconfinement

2020 ◽  
Vol 8 (4) ◽  
pp. 2115-2116
Author(s):  
Yi-Ju Wu ◽  
Cheng-Yu Wang
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yun-Lei Peng ◽  
Ting Wang ◽  
Chaonan Jin ◽  
Cheng-Hua Deng ◽  
Yanming Zhao ◽  
...  

AbstractSelective separation of propyne/propadiene mixture to obtain pure propadiene (allene), an essential feedstock for organic synthesis, remains an unsolved challenge in the petrochemical industry, thanks mainly to their similar physicochemical properties. We herein introduce a convenient and energy-efficient physisorptive approach to achieve propyne/propadiene separation using microporous metal-organic frameworks (MOFs). Specifically, HKUST-1, one of the most widely studied high surface area MOFs that is available commercially, is found to exhibit benchmark performance (propadiene production up to 69.6 cm3/g, purity > 99.5%) as verified by dynamic breakthrough experiments. Experimental and modeling studies provide insight into the performance of HKUST-1 and indicate that it can be attributed to a synergy between thermodynamics and kinetics that arises from abundant open metal sites and cage-based molecular traps in HKUST-1.


2018 ◽  
Vol 9 (20) ◽  
pp. 4579-4588 ◽  
Author(s):  
Mehrdad Asgari ◽  
Sudi Jawahery ◽  
Eric D. Bloch ◽  
Matthew R. Hudson ◽  
Roxana Flacau ◽  
...  

The work provides molecular level insight into the CO2adsorption properties of an isostructural series of MOFs, known as M-BTT.


2019 ◽  
Author(s):  
Andrew Rosen ◽  
M. Rasel Mian ◽  
Timur Islamoglu ◽  
Haoyuan Chen ◽  
Omar Farha ◽  
...  

<p>Metal−organic frameworks (MOFs) with coordinatively unsaturated metal sites are appealing as adsorbent materials due to their tunable functionality and ability to selectively bind small molecules. Through the use of computational screening methods based on periodic density functional theory, we investigate O<sub>2</sub> and N<sub>2</sub> adsorption at the coordinatively unsaturated metal sites of several MOF families. A variety of design handles are identified that can be used to modify the redox activity of the metal centers, including changing the functionalization of the linkers (replacing oxido donors with sulfido donors), anion exchange of bridging ligands (considering μ-Br<sup>-</sup>, μ-Cl<sup>-</sup>, μ-F<sup>-</sup>, μ-SH<sup>-</sup>, or μ-OH<sup>-</sup> groups), and altering the formal oxidation state of the metal. As a result, we show that it is possible to tune the O<sub>2</sub> affinity at the open metal sites of MOFs for applications involving the strong and/or selective binding of O<sub>2</sub>. In contrast with O<sub>2</sub> adsorption, N<sub>2</sub> adsorption at open metal sites is predicted to be relatively weak across the MOF dataset, with the exception of MOFs containing synthetically elusive V<sup>2+</sup> open metal sites. As one example from the screening study, we predict that exchanging the μ-Cl<sup>-</sup> ligands of M<sub>2</sub>Cl<sub>2</sub>(BBTA) (H<sub>2</sub>BBTA = 1<i>H</i>,5<i>H</i>-benzo(1,2-d:4,5-d′)bistriazole) with μ-OH<sup>-</sup> groups would significantly enhance the strength of O<sub>2</sub> adsorption at the open metal sites without a corresponding increase in the N<sub>2</sub> affinity. Experimental investigation of Co<sub>2</sub>Cl<sub>2</sub>(BBTA) and Co<sub>2</sub>(OH)<sub>2</sub>(BBTA) confirms that the former exhibits only weak physisorption, whereas the latter is capable of chemisorbing O<sub>2</sub> at room temperature. The chemisorption behavior is attributed to the greater electron-donating character of the μ-OH<sup>-</sup><sub> </sub>ligands and the presence of H-bonding interactions between the μ-OH<sup>-</sup> bridging ligands and the O<sub>2</sub> adsorbate.</p>


2018 ◽  
Author(s):  
Qi Li ◽  
Adam J. Zaczek ◽  
Timothy M. Korter ◽  
J. Axel Zeitler ◽  
Michael T. Ruggiero

<div>Understanding the nature of the interatomic interactions present within the pores of metal-organic frameworks</div><div>is critical in order to design and utilize advanced materials</div><div>with desirable applications. In ZIF-8 and its cobalt analogue</div><div>ZIF-67, the imidazolate methyl-groups, which point directly</div><div>into the void space, have been shown to freely rotate - even</div><div>down to cryogenic temperatures. Using a combination of ex-</div><div>perimental terahertz time-domain spectroscopy, low-frequency</div><div>Raman spectroscopy, and state-of-the-art ab initio simulations,</div><div>the methyl-rotor dynamics in ZIF-8 and ZIF-67 are fully charac-</div><div>terized within the context of a quantum-mechanical hindered-</div><div>rotor model. The results lend insight into the fundamental</div><div>origins of the experimentally observed methyl-rotor dynamics,</div><div>and provide valuable insight into the nature of the weak inter-</div><div>actions present within this important class of materials.</div>


2013 ◽  
Vol 125 (16) ◽  
pp. 4589-4589
Author(s):  
Li-Chiang Lin ◽  
Jihan Kim ◽  
Xueqian Kong ◽  
Eric Scott ◽  
Thomas M. McDonald ◽  
...  

2017 ◽  
Vol 89 (21) ◽  
pp. 11366-11371 ◽  
Author(s):  
Huai-Song Wang ◽  
Hai-Ling Liu ◽  
Kang Wang ◽  
Ya Ding ◽  
Jing-Juan Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document