CRISPR/Cas-Based Genome Editing for Human Gut Commensal Bacteroides Species

Author(s):  
Linggang Zheng ◽  
Yang Tan ◽  
Yucan Hu ◽  
Juntao Shen ◽  
Zepeng Qu ◽  
...  
2020 ◽  
Author(s):  
Tracey Bell ◽  
Sarah Draper ◽  
M Centanni ◽  
Susan Carnachan ◽  
GW Tannock ◽  
...  

© 2018 American Chemical Society. Polysaccharides from feijoa fruit were extracted and analyzed; the composition of these polysaccharides conforms to those typically found in the primary cell walls of eudicotyledons. The two major polysaccharide extracts consisted of mainly pectic polysaccharides and hemicellulosic polysaccharides [xyloglucan (77%) and arabinoxylan (16%)]. A collection of commensal Bacteroides species was screened for growth in culture using these polysaccharide preparations and placed into five categories based on their preference for each substrate. Most of the species tested could utilize the pectic polysaccharides, but growth on the hemicellulose was more limited. Constituent sugar and glycosyl linkage analysis showed that species that grew on the hemicellulose fraction showed differences in their preference for the two polysaccharides in this preparation. Our data demonstrate that the members of the genus Bacteroides show differential hydrolysis of pectic polysaccharides, xyloglucan, and arabinoxylan, which might influence the structure and metabolic activities of the microbiota in the human gut.


2020 ◽  
Vol 8 (10) ◽  
pp. 1483
Author(s):  
Miloslava Kollarcikova ◽  
Marcela Faldynova ◽  
Jitka Matiasovicova ◽  
Eva Jahodarova ◽  
Tereza Kubasova ◽  
...  

Bacteroidaceae are common gut microbiota members in all warm-blooded animals. However, if Bacteroidaceae are to be used as probiotics, the species selected for different hosts should reflect the natural distribution. In this study, we therefore evaluated host adaptation of bacterial species belonging to the family Bacteroidaceae. B. dorei, B. uniformis, B. xylanisolvens, B. ovatus, B. clarus, B. thetaiotaomicron and B. vulgatus represented human-adapted species while B. gallinaceum, B. caecigallinarum, B. mediterraneensis, B. caecicola, M. massiliensis, B. plebeius and B. coprocola were commonly detected in chicken but not human gut microbiota. There were 29 genes which were present in all human-adapted Bacteroides but absent from the genomes of all chicken isolates, and these included genes required for the pentose cycle and glutamate or histidine metabolism. These genes were expressed during an in vitro competitive assay, in which human-adapted Bacteroides species overgrew the chicken-adapted isolates. Not a single gene specific for the chicken-adapted species was found. Instead, chicken-adapted species exhibited signs of frequent horizontal gene transfer, of KUP, linA and sugE genes in particular. The differences in host adaptation should be considered when the new generation of probiotics for humans or chickens is designed.


2007 ◽  
Vol 20 (4) ◽  
pp. 593-621 ◽  
Author(s):  
Hannah M. Wexler

SUMMARY Summary: Bacteroides species are significant clinical pathogens and are found in most anaerobic infections, with an associated mortality of more than 19%. The bacteria maintain a complex and generally beneficial relationship with the host when retained in the gut, but when they escape this environment they can cause significant pathology, including bacteremia and abscess formation in multiple body sites. Genomic and proteomic analyses have vastly added to our understanding of the manner in which Bacteroides species adapt to, and thrive in, the human gut. A few examples are (i) complex systems to sense and adapt to nutrient availability, (ii) multiple pump systems to expel toxic substances, and (iii) the ability to influence the host immune system so that it controls other (competing) pathogens. B. fragilis, which accounts for only 0.5% of the human colonic flora, is the most commonly isolated anaerobic pathogen due, in part, to its potent virulence factors. Species of the genus Bacteroides have the most antibiotic resistance mechanisms and the highest resistance rates of all anaerobic pathogens. Clinically, Bacteroides species have exhibited increasing resistance to many antibiotics, including cefoxitin, clindamycin, metronidazole, carbapenems, and fluoroquinolones (e.g., gatifloxacin, levofloxacin, and moxifloxacin).


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0144382 ◽  
Author(s):  
Maria Elisa Perez-Muñoz ◽  
Payal Joglekar ◽  
Yi-Ji Shen ◽  
Kuan Y. Chang ◽  
Daniel A. Peterson

2020 ◽  
Author(s):  
Tracey Bell ◽  
Sarah Draper ◽  
M Centanni ◽  
Susan Carnachan ◽  
GW Tannock ◽  
...  

© 2018 American Chemical Society. Polysaccharides from feijoa fruit were extracted and analyzed; the composition of these polysaccharides conforms to those typically found in the primary cell walls of eudicotyledons. The two major polysaccharide extracts consisted of mainly pectic polysaccharides and hemicellulosic polysaccharides [xyloglucan (77%) and arabinoxylan (16%)]. A collection of commensal Bacteroides species was screened for growth in culture using these polysaccharide preparations and placed into five categories based on their preference for each substrate. Most of the species tested could utilize the pectic polysaccharides, but growth on the hemicellulose was more limited. Constituent sugar and glycosyl linkage analysis showed that species that grew on the hemicellulose fraction showed differences in their preference for the two polysaccharides in this preparation. Our data demonstrate that the members of the genus Bacteroides show differential hydrolysis of pectic polysaccharides, xyloglucan, and arabinoxylan, which might influence the structure and metabolic activities of the microbiota in the human gut.


2017 ◽  
Vol 6 (3) ◽  
pp. 162-162
Author(s):  
Liane Kaufmann ◽  
Michael von Aster
Keyword(s):  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

Sign in / Sign up

Export Citation Format

Share Document