Freestanding Graphene Paper Supported Three-Dimensional Porous Graphene–Polyaniline Nanocomposite Synthesized by Inkjet Printing and in Flexible All-Solid-State Supercapacitor

2014 ◽  
Vol 6 (18) ◽  
pp. 16312-16319 ◽  
Author(s):  
Kai Chi ◽  
Zheye Zhang ◽  
Jiangbo Xi ◽  
Yongan Huang ◽  
Fei Xiao ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (39) ◽  
pp. 31064-31073 ◽  
Author(s):  
Wei Fan ◽  
Yue-E Miao ◽  
Longsheng Zhang ◽  
Yunpeng Huang ◽  
Tianxi Liu

Three-dimensional porous graphene–carbon nanotube hybrid papers were obtained as a conductive, flexible and free-standing nano-scaffold for PANI immobilization.


2015 ◽  
Vol 3 (8) ◽  
pp. 4428-4434 ◽  
Author(s):  
Kewei Shu ◽  
Caiyun Wang ◽  
Sha Li ◽  
Chen Zhao ◽  
Yang Yang ◽  
...  

Flexible porous graphene paper was obtained via facile freeze drying method. It exhibits an excellent electrode performance in both the lithium battery and solid-state supercapacitor.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2019 ◽  
Author(s):  
Sayan Mondal ◽  
Gary Tresadern ◽  
Jeremy Greenwood ◽  
Byungchan Kim ◽  
Joe Kaus ◽  
...  

<p>Optimizing the solubility of small molecules is important in a wide variety of contexts, including in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral bioavailability. In such a context, solubility optimization cannot be successfully pursued by indiscriminate increases in polarity, which would likely reduce permeability and potency. Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes the solid-state form. Here we present a novel physics-based approach to predict the solubility of small molecules, that takes into account three-dimensional solid-state characteristics in addition to polarity. The calculated solubilities are in good agreement with experimental solubilities taken both from the literature as well as from several active pharmaceutical discovery projects. This computational approach enables strategies to optimize solubility by disrupting the three-dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal chemistry campaign.</p>


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3577
Author(s):  
Zbigniew Stempien ◽  
Mohmmad Khalid ◽  
Marcin Kozanecki ◽  
Paulina Filipczak ◽  
Angelika Wrzesińska ◽  
...  

In this work, we propose a novel method for the preparation of polypyrrole (PPy) layers on textile fabrics using a reactive inkjet printing technique with direct freezing of inks under varying temperature up to −16 °C. It was found that the surface resistance of PPy layers on polypropylene (PP) fabric, used as a standard support, linearly decreased from 6335 Ω/sq. to 792 Ω/sq. with the decrease of polymerization temperature from 23 °C to 0 °C. The lowest surface resistance (584 Ω/sq.) of PPy layer was obtained at −12 °C. The spectroscopic studies showed that the degree of the PPy oxidation as well as its conformation is practically independent of the polymerization temperature. Thus, observed tendences in electrical conductivity were assigned to change in PPy layer morphology, as it is significantly influenced by the reaction temperature: the lower the polymerization temperature the smoother the surface of PPy layer. The as-coated PPy layers on PP textile substrates were further assembled as the electrodes in symmetric all-solid-state supercapacitor devices to access their electrochemical performance. The electrochemical results demonstrate that the symmetric supercapacitor device made with the PPy prepared at −12 °C, showed the highest specific capacitance of 72.3 F/g at a current density of 0.6 A/g, and delivers an energy density of 6.12 Wh/kg with a corresponding power density of 139 W/kg.


Sign in / Sign up

Export Citation Format

Share Document