Luminescent/paramagnetic probes for detecting order in biological assemblies: transformation of luminescent probes into .pi.-radicals by photochemical reduction

Biochemistry ◽  
1992 ◽  
Vol 31 (17) ◽  
pp. 4275-4282 ◽  
Author(s):  
Katalin Ajtai ◽  
Thomas P. Burghardt
1994 ◽  
Vol 59 (5) ◽  
pp. 1066-1076 ◽  
Author(s):  
Šárka Klementová ◽  
Dana M. Wagnerová

The influence of ferric ions on photoinitiated reaction of dioxygen with two carbon organic acids, aldehydes and alcohols related to natural waters was demonstrated. Photocatalytic effect of ferric ions, i.e. photochemical reduction of Fe(III) as the catalyst generating step, has been found to be the common principal of these reactions. The overall quantum yields of the reactions are in the range from 0.3 to 1.2. A mathematical model designed for the mechanism of cyclic generation of catalyst in the singlet substrate oxidation by O2 was applied to the system glyoxalic acid + Fe(III); a fair agreement between the simulated and experimental kinetic curves was obtained. The experimental rate constant is 4.4 .10-4 s -1.


2021 ◽  
Vol 50 (15) ◽  
pp. 5197-5207
Author(s):  
Mohini Gupta ◽  
Rajamani Nagarajan ◽  
Chitteti Ramamurthy ◽  
Perumal Vivekanandan ◽  
G. Vijaya Prakash

Strong and site selective red-emitting photoluminescent/MRI multi-functional KLa(0.95−x)GdxF4:Eu3+ (x = 0–0.4) bio-compatible nanomaterials for targeted in-vitro liver cancer cell imaging.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Jashobanta Sahoo ◽  
Santlal Jaiswar ◽  
Pabitra B. Chatterjee ◽  
Palani S. Subramanian ◽  
Himanshu Sekhar Jena

The development of synthetic lanthanide luminescent probes for selective sensing or binding anions in aqueous medium requires an understanding of how these anions interact with synthetic lanthanide probes. Synthetic lanthanide probes designed to differentiate anions in aqueous medium could underpin exciting new sensing tools for biomedical research and drug discovery. In this direction, we present three mononuclear lanthanide-based complexes, EuLCl3 (1), SmLCl3 (2), and TbLCl3 (3), incorporating a hexadentate aminomethylpiperidine-based nitrogen-rich heterocyclic ligand L for sensing anion and establishing mechanistic insight on their binding activities in aqueous medium. All these complexes are meticulously studied for their preferential selectivities towards different anions such as HPO42−, SO42−, CH3COO−, I−, Br−, Cl−, F−, NO3−, CO32−/HCO3−, and HSO4− at pH 7.4 in aqueous HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid) buffer. Among the anions scanned, HPO42− showed an excellent luminescence change with all three complexes. Job’s plot and ESI-MS support the 1:2 association between the receptors and HPO42−. Systematic spectrophotometric titrations of 1–3 against HPO42− demonstrates that the emission intensities of 1 and 2 were enhanced slightly upon the addition of HPO42− in the range 0.01–1 equiv and 0.01–2 equiv., respectively. Among the three complexes, complex 3 showed a steady quenching of luminescence throughout the titration of hydrogen phosphate. The lower and higher detection limits of HPO42− by complexes 1 and 2 were determined as 0.1–4 mM and 0.4–3.2 mM, respectively, while complex 3 covered 0.2–100 μM. This concludes that all complexes demonstrated a high degree of sensitivity and selectivity towards HPO42−.


2021 ◽  
Author(s):  
David Parker ◽  
Jack D. Fradgley ◽  
Ka-Leung Wong

The design principles that guide the creation of responsive lanthanide luminescent probes are defined, classified and exemplified.


2021 ◽  
Vol 57 (16) ◽  
pp. 2033-2036
Author(s):  
Jin-Han Guo ◽  
Xiao-Yao Dao ◽  
Wei-Yin Sun

A new iron–nitrogen doped carbon and CdS hybrid system was developed to efficiently reduce CO2 to CO under UV/vis light (AM 1.5G) irradiation in aqueous solution.


2021 ◽  
Author(s):  
Zhonghua Qu ◽  
Xing Chen ◽  
Shuai Zhong ◽  
Guo-Jun Deng ◽  
Huawen Huang

Author(s):  
Guodong Li ◽  
Chun Wu ◽  
Dik-Lung Ma ◽  
Chung-Hang Leung

Sign in / Sign up

Export Citation Format

Share Document