Human skeletal growth factor: characterization of the mitogenic effect on bone cells in vitro

Biochemistry ◽  
1982 ◽  
Vol 21 (14) ◽  
pp. 3508-3513 ◽  
Author(s):  
John R. Farley ◽  
T. Masuda ◽  
J. E. Wergedal ◽  
David J. Baylink
2009 ◽  
Vol 15 (7) ◽  
pp. 1523-1532 ◽  
Author(s):  
Marc-Olivier Montjovent ◽  
Chiara Bocelli-Tyndall ◽  
Corinne Scaletta ◽  
Arnaud Scherberich ◽  
Silke Mark ◽  
...  

1996 ◽  
Vol 270 (1) ◽  
pp. H411-H415 ◽  
Author(s):  
L. Morbidelli ◽  
C. H. Chang ◽  
J. G. Douglas ◽  
H. J. Granger ◽  
F. Ledda ◽  
...  

Vascular endothelial growth factor (VEGF) is a secreted protein that is a specific growth factor for endothelial cells. We have recently demonstrated that nitric oxide (NO) donors and vasoactive peptides promoting NO-mediated vasorelaxation induce angiogenesis in vivo as well as endothelial cell growth and motility in vitro; in contrast, inhibitors of NO synthase suppress angiogenesis. In this study we investigated the role of NO in mediating the mitogenic effect of VEGF on cultured microvascular endothelium isolated from coronary postcapillary venules. VEGF induced a dose-dependent increase in cell proliferation and DNA synthesis. The role of NO was determined by monitoring proliferation or guanosine 3',5'-cyclic monophosphate (cGMP) levels in the presence and absence of NO synthase blockers. The proliferative effect evoked by VEGF was reduced by pretreatment of the cells with NO synthase inhibitors. Exposure of the cells to VEGF induced a significant increment in cGMP levels. This effect was potentiated by superoxide dismutase addition and was abolished by NO synthase inhibitors. VEGF stimulates proliferation of postcapillary endothelial cells through the production of NO and cGMP accumulation.


Biochemistry ◽  
1982 ◽  
Vol 21 (14) ◽  
pp. 3502-3507 ◽  
Author(s):  
John R. Farley ◽  
David J. Baylink

2011 ◽  
Vol 165 (3) ◽  
pp. 393-400 ◽  
Author(s):  
Thor Ueland ◽  
Tove Lekva ◽  
Kari Otterdal ◽  
Tuva B Dahl ◽  
Nicoleta Cristina Olarescu ◽  
...  

ObjectivePatients with adult onset GH deficiency (aoGHD) have secondary osteoporosis, which is reversed by long-term GH substitution. Transforming growth factor β1 (TGFβ1 or TGFB1) is abundant in bone tissue and could mediate some effects of GH/IGFs on bone. We investigated its regulation by GH/IGF1in vivoandin vitro.Design and methodsThe effects of GH substitution (9–12 months, placebo controlled) on circulating and cortical bone matrix contents of TGFβ1 were investigated in patients with aoGHD. The effects of GH/IGF1 on TGFβ1 secretion in osteoblasts (hFOB), adipocytes, and THP-1 macrophages as well as the effects on release from platelets were investigatedin vitro.ResultsIn vivoGH substitution increased TGFβ1 protein levels in cortical bone and serum.In vitro, GH/IGF1 stimulation induced a significant increase in TGFβ1 secretion in hFOB. In contrast, no major effect of GH/IGF1 on TGFβ1 was found in adipocytes and THP-1 macrophages. Finally, a minor modifying effect on SFLLRN-stimulated platelet release of TGFβ1 was observed in the presence of IGF1.ConclusionGH substitution increases TGFβ1in vivoandin vitro, and this effect could contribute to improved bone metabolism during such therapy, potentially reflecting direct effect of GH/IGF1 on bone cells.


Sign in / Sign up

Export Citation Format

Share Document