Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis

Biochemistry ◽  
1981 ◽  
Vol 20 (14) ◽  
pp. 4162-4168 ◽  
Author(s):  
Leon Dure ◽  
Sally C. Greenway ◽  
Glenn A. Galau
1974 ◽  
Vol 144 (2) ◽  
pp. 413-426 ◽  
Author(s):  
W I P Mainwaring ◽  
F R Mangan ◽  
R A Irving ◽  
D A Jones

1. Aldolase was selected as a suitable marker for following the androgenic regulation of mRNA synthesis in the prostate gland. 2. Antibodies raised in rabbits against crystalline prostate aldolase were used to monitor the synthesis of this androgen-induced enzyme after hormonal stimulation of castrated animals, by using procedures in vivo and in vitro for the translation of prostate poly(A)-rich mRNA. 3. After androgenic stimulation in vivo the poly(A)-rich mRNA was isolated from the prostate gland and other tissues of castrated rats, and added to a protein-synthesizing system in vitro derived from Krebs II ascites-tumour cells. By using this approach it was found that androgens regulate the synthesis of aldolase mRNA in a highly tissue-specific manner. Stimulation of aldolase mRNA synthesis reached a maximum after 8h of androgenic treatment and then declined. 4. The androgenic control of aldolase mRNA synthesis was also investigated in vivo. After treatment of castrated animals with various steroids in vivo [35S]methionine was injected directly into the prostate gland, and labelled aldolase was selectively precipitated from isolated polyribosomes with anti-aldolase serum. The regulation of aldolase mRNA synthesis in the prostate gland was stringently steroid-specific and could only be evoked by androgens. After a single injection of testosterone, aldolase synthesis reached a maximum after 16h of hormonal stimulation and then declined. 5. Although androgens exert significant control over transcriptional processes in the prostate gland, and appear to regulate the synthesis of aldolase mRNA de novo, the possibility exists for additional means of control at the translational level of aldolase synthesis. The results are discussed in the context of the overall mechanism of action of androgens.


1987 ◽  
Vol 127 (1) ◽  
pp. 413-426 ◽  
Author(s):  
A. J. EL HAJ ◽  
D. F. HOULIHAN

In vivo protein synthesis rates were measured in the carpopodite extensor muscle of the shore crab, Carcinus maenas, following a single, high-dose injection of [3H]phenylalanine, which stabilized specific radioactivities in the free pools. In intermoult animals the percentage of protein mass synthesized per day (the fractional rate of protein synthesis) was 1.15% day−1 for the whole extensor muscle. The small, slow-type tonic fibres in the extensor had fractional rates of protein synthesis some 2.1 times higher than those of the large, fast-type phasic fibres. Measurement of protein synthesis rates of extensor muscles from intermoult animals using an in vitro incubation over 2h gave fractional synthesis rates three times lower than those found in in vivo experiments. Compared with the intermoult animals, six- and three-fold increases in fractional synthesis rates were found in the extensor muscles from stages immediately preceding and following ecdysis, respectively. Microdissection of the muscle fibres revealed that the increased synthesis in postecdysial animals was occurring mainly at the external cuticular end of the muscle fibres. Autoradiographic analysis confirmed the cuticular end of the muscles as the major site of muscle protein synthesis. We conclude that the postecdysial increase in muscle fibre length and the associated increase in the sarcomere number is accompanied by an increase in protein synthesis in the muscles.


1984 ◽  
Vol 136 (2) ◽  
pp. 285-292 ◽  
Author(s):  
Thaddeus S. Nowak ◽  
Elizabeth R. Carty ◽  
W.David Lust ◽  
Janet V. Passonneau

1971 ◽  
Vol 124 (3) ◽  
pp. 537-541 ◽  
Author(s):  
D. P. Leader ◽  
I. G. Wool ◽  
J. J. Castles

The aminoacyltransferase I-catalysed binding of phenylalanyl-tRNA (unfractionated Escherichia coli B tRNA acylated with radioactive phenylalanine and 19 non-radioactive amino acids) to skeletal-muscle ribosomes from diabetic rats was less than that to ribosomes from normal rats when the Mg2+ concentration was low (7.5mm); whereas just the reverse was true when the concentration of the cation was higher (15mm). Thus the Mg2+ dependency of aminoacyltransferase I-catalysed binding of phenylalanyl-tRNA to ribosomes from normal and diabetic rats paralleled the effect of Mg2+ concentration on synthesis of polyphenylalanine reported before. During incubation at 7.5mm-Mg2+ phenylalanyl-tRNA was bound only to ribosomes bearing nascent peptidyl-tRNA. There are fewer such ribosomes in a preparation from the muscle of diabetic animals because diabetic animals synthesize less protein in vivo. Thus the difference in polyphenylalanine synthesis in vitro is adequately explained by the difference in enzyme-catalysed binding of phenylalanyl-tRNA to ribosomes, however, the basis of the difference in protein synthesis in vivo is still unknown.


Sign in / Sign up

Export Citation Format

Share Document