Binding Site for C4b-Binding Protein in Vitamin K-Dependent Protein S Fully Contained in Carboxy-Terminal Laminin-G-type Repeats. A Study Using Recombinant Factor IX-Protein S Chimeras and Surface Plasmon Resonance†

Biochemistry ◽  
1997 ◽  
Vol 36 (12) ◽  
pp. 3745-3754 ◽  
Author(s):  
Xuhua He ◽  
Lei Shen ◽  
Ann-Christin Malmborg ◽  
Kenneth J. Smith ◽  
Björn Dahlbäck ◽  
...  
2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Tina M. Cairns ◽  
Noah T. Ditto ◽  
Doina Atanasiu ◽  
Huan Lou ◽  
Benjamin D. Brooks ◽  
...  

ABSTRACTHerpes simplex virus (HSV) requires fusion between the viral envelope and host membrane. Four glycoproteins, gD, gH/gL, and gB, are essential for this process. To initiate fusion, gD binds its receptor and undergoes a conformational change that hypothetically leads to activation of gH/gL, which in turn triggers the fusion protein gB to undergo rearrangements leading to membrane fusion. Our model predicts that gD must interact with both its receptor and gH/gL to promote fusion. In support of this, we have shown that gD is structurally divided into two “faces”: one for the binding receptor and the other for its presumed interaction with gH/gL. However, until now, we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used surface plasmon resonance to show that the ectodomain of gH/gL binds directly to the ectodomain of gD when (i) gD is captured by certain anti-gD monoclonal antibodies (MAbs) that are bound to a biosensor chip, (ii) gD is bound to either one of its receptors on a chip, and (iii) gD is covalently bound to the chip surface. To localize the gH/gL binding site on gD, we used multiple anti-gD MAbs from six antigenic communities and determined which ones interfered with this interaction. MAbs from three separate communities block gD-gH/gL binding, and their epitopes encircle a geographical area on gD that we propose comprises the gH/gL binding domain. Together, our results show that gH/gL interacts directly with gD, supporting a role for this step in HSV entry.IMPORTANCEHSV entry is a multistep process that requires the actions of four glycoproteins, gD, gH/gL, and gB. Our current model predicts that gD must interact with both its receptor and gH/gL to promote viral entry. Although we know a great deal about how gD binds its receptors, until now we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used a highly sensitive surface plasmon resonance technique to clearly demonstrate that gD and gH/gL interact. Furthermore, using multiple MAbs with defined epitopes, we have delineated a domain on gD that is independent of that used for receptor binding and which likely represents the gH/gL interaction domain. Targeting this interaction to prevent fusion may enhance both therapeutic and vaccine strategies.


2016 ◽  
Vol 161 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Natsuki Fukuda ◽  
Yoshiaki Suwa ◽  
Makiyo Uchida ◽  
Yoshihiro Kobashigawa ◽  
Hideshi Yokoyama ◽  
...  

2005 ◽  
Vol 79 (2) ◽  
pp. 1164-1179 ◽  
Author(s):  
Hongying Chen ◽  
Andrew Gill ◽  
Brian K. Dove ◽  
Stevan R. Emmett ◽  
C. Fred Kemp ◽  
...  

ABSTRACT Phosphorylation of the coronavirus nucleoprotein (N protein) has been predicted to play a role in RNA binding. To investigate this hypothesis, we examined the kinetics of RNA binding between nonphosphorylated and phosphorylated infectious bronchitis virus N protein with nonviral and viral RNA by surface plasmon resonance (Biacore). Mass spectroscopic analysis of N protein identified phosphorylation sites that were proximal to RNA binding domains. Kinetic analysis, by surface plasmon resonance, indicated that nonphosphorylated N protein bound with the same affinity to viral RNA as phosphorylated N protein. However, phosphorylated N protein bound to viral RNA with a higher binding affinity than nonviral RNA, suggesting that phosphorylation of N protein determined the recognition of virus RNA. The data also indicated that a known N protein binding site (involved in transcriptional regulation) consisting of a conserved core sequence present near the 5′ end of the genome (in the leader sequence) functioned by promoting high association rates of N protein binding. Further analysis of the leader sequence indicated that the core element was not the only binding site for N protein and that other regions functioned to promote high-affinity binding.


Sign in / Sign up

Export Citation Format

Share Document