scholarly journals Mass Spectroscopic Characterization of the Coronavirus Infectious Bronchitis Virus Nucleoprotein and Elucidation of the Role of Phosphorylation in RNA Binding by Using Surface Plasmon Resonance

2005 ◽  
Vol 79 (2) ◽  
pp. 1164-1179 ◽  
Author(s):  
Hongying Chen ◽  
Andrew Gill ◽  
Brian K. Dove ◽  
Stevan R. Emmett ◽  
C. Fred Kemp ◽  
...  

ABSTRACT Phosphorylation of the coronavirus nucleoprotein (N protein) has been predicted to play a role in RNA binding. To investigate this hypothesis, we examined the kinetics of RNA binding between nonphosphorylated and phosphorylated infectious bronchitis virus N protein with nonviral and viral RNA by surface plasmon resonance (Biacore). Mass spectroscopic analysis of N protein identified phosphorylation sites that were proximal to RNA binding domains. Kinetic analysis, by surface plasmon resonance, indicated that nonphosphorylated N protein bound with the same affinity to viral RNA as phosphorylated N protein. However, phosphorylated N protein bound to viral RNA with a higher binding affinity than nonviral RNA, suggesting that phosphorylation of N protein determined the recognition of virus RNA. The data also indicated that a known N protein binding site (involved in transcriptional regulation) consisting of a conserved core sequence present near the 5′ end of the genome (in the leader sequence) functioned by promoting high association rates of N protein binding. Further analysis of the leader sequence indicated that the core element was not the only binding site for N protein and that other regions functioned to promote high-affinity binding.

Author(s):  
Z. S. Klestova ◽  
A. K. Voronina ◽  
A. Yu. Yushchenko ◽  
O. S. Vatlitsova ◽  
G. V. Dorozinsky ◽  
...  

The article presents a new developed method, which is able to detect the chicken infectious bronchitis virus (IBV) antigen in real time in various buffer solutions, using the surface plasmon resonance (PPR) nanobiosensor of the Plasmon-6 device. The PPR method is hypersensitive to changes in external factors, including the interaction of antigen (coronavirus) and specific antibodies. If the interaction does not happen, the resonance occurs at other angular parameters of the position of the sensitive PPR element relative to the laser radiation. Therefore, the PPR method is becoming a new effective rapid technique of viral pathogen detection, which is important for effective control over infectious diseases spreading. The possibility of IBK virus detection by the PPR sensor response, with preliminary immobilization of antigen or antibodies, is shown, involving the device "Plasmon- 6". The duration of the experiment is about 2 hours, which significantly saves research time compared to other methods (6-48 hours). The changes in the resonance angle in the range of 360-500 angle. sec when the IBC virus antigen binds to serum antibodies in water (distilled) were detected. The angular shift of the nanosensor resonance was determined when the IBC virus antigen bound to the serum antibodies in the PBS, which averaged 354 angular seconds. The possibilities of using the PPR method for express detection of the coronavirus infections pathogen in animal fluids in real time are demonstrated in article. Taking into account the significant social and economic negative consequences of the Coronaviridae virus family members and considering the current situation with the worldwide spread of COVID-19, the representative of the coronavirus family – the Infectious Bronchitis virus has been selected as a model.


2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Tina M. Cairns ◽  
Noah T. Ditto ◽  
Doina Atanasiu ◽  
Huan Lou ◽  
Benjamin D. Brooks ◽  
...  

ABSTRACTHerpes simplex virus (HSV) requires fusion between the viral envelope and host membrane. Four glycoproteins, gD, gH/gL, and gB, are essential for this process. To initiate fusion, gD binds its receptor and undergoes a conformational change that hypothetically leads to activation of gH/gL, which in turn triggers the fusion protein gB to undergo rearrangements leading to membrane fusion. Our model predicts that gD must interact with both its receptor and gH/gL to promote fusion. In support of this, we have shown that gD is structurally divided into two “faces”: one for the binding receptor and the other for its presumed interaction with gH/gL. However, until now, we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used surface plasmon resonance to show that the ectodomain of gH/gL binds directly to the ectodomain of gD when (i) gD is captured by certain anti-gD monoclonal antibodies (MAbs) that are bound to a biosensor chip, (ii) gD is bound to either one of its receptors on a chip, and (iii) gD is covalently bound to the chip surface. To localize the gH/gL binding site on gD, we used multiple anti-gD MAbs from six antigenic communities and determined which ones interfered with this interaction. MAbs from three separate communities block gD-gH/gL binding, and their epitopes encircle a geographical area on gD that we propose comprises the gH/gL binding domain. Together, our results show that gH/gL interacts directly with gD, supporting a role for this step in HSV entry.IMPORTANCEHSV entry is a multistep process that requires the actions of four glycoproteins, gD, gH/gL, and gB. Our current model predicts that gD must interact with both its receptor and gH/gL to promote viral entry. Although we know a great deal about how gD binds its receptors, until now we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used a highly sensitive surface plasmon resonance technique to clearly demonstrate that gD and gH/gL interact. Furthermore, using multiple MAbs with defined epitopes, we have delineated a domain on gD that is independent of that used for receptor binding and which likely represents the gH/gL interaction domain. Targeting this interaction to prevent fusion may enhance both therapeutic and vaccine strategies.


2016 ◽  
Vol 161 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Natsuki Fukuda ◽  
Yoshiaki Suwa ◽  
Makiyo Uchida ◽  
Yoshihiro Kobashigawa ◽  
Hideshi Yokoyama ◽  
...  

2011 ◽  
Vol 94 (4) ◽  
pp. 1217-1226 ◽  
Author(s):  
Pathik Vyas ◽  
Anthony A O'kane ◽  
E Ager ◽  
S Crooks ◽  
C Elliott ◽  
...  

Abstract A collaborative study was conducted on an inhibition-based protein-binding assay using the Biacore Q™ biosensor instrument and the Biacore Qflex™ Kit Vitamin B12 PI. The samples studied included infant formula, cereals, premixes, vitamin tablets, dietary supplements, and baby food. The collaborative study, which involved 11 laboratories, demonstrated that the assay showed an RSDr of 1.59–27.8 and HorRat values for reproducibility of 0.34–1.89 in samples with levels ranging from ppm to ppb. The assay studied is a label-free protein binding-based assay that uses the principle of surface plasmon resonance (SPR) to measure the interaction between vitamin B12 and a specifc binding protein. A Biacore Q biosensor uses this principle to detect binding directly at the surface of a sensor chip with a hydrophilic gold-dextran surface. The instrument passes a mixture of prepared sample extract and binding protein solution across a covalently immobilized vitamin B12 chip surface, and the response is given as free-binding protein as the mixture binds to the immobilized surface. This technique uses the specifcity and robustness of the protein-ligand interaction to allow minimal sample preparation and a wide range of matrixes to be analyzed rapidly. The reagents and accessories needed to perform this assay are provided as the ready-to-use format “Qflex Kit Vitamin B12 PI.” The method is intended for routine use in the quantitative determination of vitamin B12 (as cyanocobalamin) in a wide range of food products, dietary vitamin supplements, and multivitamin premixes.


Sign in / Sign up

Export Citation Format

Share Document