scholarly journals Role of the [Fe4S4] Cluster in Mediating Disulfide Reduction in Spinach Ferredoxin:Thioredoxin Reductase†

Biochemistry ◽  
1998 ◽  
Vol 37 (13) ◽  
pp. 4612-4620 ◽  
Author(s):  
Christopher R. Staples ◽  
Eric Gaymard ◽  
Anne-Lise Stritt-Etter ◽  
Joshua Telser ◽  
Brian M. Hoffman ◽  
...  
2008 ◽  
Vol 112 (8) ◽  
pp. 2511-2523 ◽  
Author(s):  
Alexandra T. P. Carvalho ◽  
Marcel Swart ◽  
Joost N. P. van Stralen ◽  
Pedro A. Fernandes ◽  
Maria J. Ramos ◽  
...  

1974 ◽  
Vol 189 (3) ◽  
pp. 387-393 ◽  
Author(s):  
Thomas E. Wagner ◽  
David R. Mann ◽  
Roger C. Vincent
Keyword(s):  

1998 ◽  
Vol 274 (2) ◽  
pp. G376-G384 ◽  
Author(s):  
Terry S. Legrand ◽  
Tak Yee Aw

We showed that hypoxia alters glutathione (GSH)-dependent detoxication and induces mucosal metabolic instability. To determine the impact of these changes and the role of reductant supply in intestinal lipid peroxide disposition, pair-fed (16 g/day) Sprague-Dawley rats were exposed to air (20.9% O2; n = 6) or 10% O2( n = 6) for 10 days. Jejunal and ileal everted sacs were exposed to 75 μM peroxidized fish oil with or without 10 mM glucose or 1 mM GSH. Peroxide transport was determined as the abluminal recovery of thiobarbituric acid-reactive substances. Peroxide recovery in hypoxic intestine was twice that in normoxic intestine. Addition of GSH and glucose did not affect peroxide recovery, indicating reduced intracellular GSH-dependent metabolism and enhanced output by the hypoxic intestine. Glucose uptake by normoxic and hypoxic intestine is similar, whereas its utilization for detoxication is decreased in hypoxic cells. Determination of NADPH supply indicates that decreased glucose availability for NADPH production during hypoxia impairs GSH disulfide reduction, compromises hydroperoxide metabolism, and increases peroxide output from hypoxic intestine.


2021 ◽  
Vol 14 ◽  
Author(s):  
Bon-Kyung Koo ◽  
William Munroe ◽  
Edith B. Gralla ◽  
Joan Selverstone Valentine ◽  
Julian P. Whitelegge

Wild-type human SOD1 forms a highly conserved intra-molecular disulfide bond between C57-C146, and in its native state is greatly stabilized by binding one copper and one zinc atom per monomer rendering the protein dimeric. Loss of copper extinguishes dismutase activity and destabilizes the protein, increasing accessibility of the disulfide with monomerization accompanying disulfide reduction. A further pair of free thiols exist at C6 and C111 distant from metal binding sites, raising the question of their function. Here we investigate their role in misfolding of SOD1 along a pathway that leads to formation of amyloid fibrils. We present the seeding reaction of a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) to exclude variables caused by these free cysteines. Completely reduced fibril seeds decreasing the kinetic barrier to cleave the highly conserved intramolecular disulfide bond, and accelerating SOD1 reduction and initiation of fibrillation. Presence or absence of the pair of free thiols affects kinetics of fibrillation. Previously, we showed full maturation with both Cu and Zn prevents this behavior while lack of Cu renders sensitivity to fibrillation, with presence of the native disulfide bond modulating this propensity much more strongly than presence of Zn or dimerization. Here we further investigate the role of reduction of the native C57-C146 disulfide bond in fibrillation of wild-type hSOD1, firstly through removal of free thiols by paired mutations C6A, C111S (AS-SOD1), and secondly in seeded fibrillation reactions modulated by reductant tris (2-carboxyethyl) phosphine (TCEP). Fibrillation of AS-SOD1 was dependent upon disulfide reduction and showed classic lag and exponential growth phases compared with wild-type hSOD1 whose fibrillation trajectories were typically somewhat perturbed. Electron microscopy showed that AS-SOD1 formed classic fibrils while wild-type fibrillation reactions showed the presence of smaller “sausage-like” oligomers in addition to fibrils, highlighting the potential for mixed disulfides involving C6/C111 to disrupt efficient fibrillation. Seeding by addition of sonicated fibrils lowered the TCEP concentration needed for fibrillation in both wild-type and AS-SOD1 providing evidence for template-driven structural disturbance that elevated susceptibility to reduction and thus propensity to fibrillate.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


Sign in / Sign up

Export Citation Format

Share Document