An Unforeseen Chemical Rearrangement of Pyridinecarboxylate to Oxalate under Hydrothermal Conditions Afforded the First Oxalato and Isonicotinato Mixed-Ligand Guest-Inclusion Coordination Polymer

2002 ◽  
Vol 2 (6) ◽  
pp. 485-487 ◽  
Author(s):  
Jack Y. Lu ◽  
Jose Macias ◽  
Jiageng Lu ◽  
Jared E. Cmaidalka
2017 ◽  
Vol 73 (7) ◽  
pp. 503-507 ◽  
Author(s):  
Long Tang ◽  
Juan Zhang ◽  
Xiao-Xia Liu ◽  
Ji-Jiang Wang ◽  
Feng Fu

The reaction of Cu(NO3)2·3H2O with 2,4′-oxybis(benzoic acid) and 4,4′-bipyridine under hydrothermal conditions produced a new mixed-ligand two-dimensional copper(II) coordination polymer, namely poly[[(μ-4,4′-bipyridine-κ2 N,N′)[μ-2,4′-oxybis(benzoato)-κ4 O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O} n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction. The X-ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two-dimensional wave-like network through 4,4′-bipyridine and 2,4′-oxybis(benzoate) ligands. The two-dimensional layers are expanded into a three-dimensional supramolecular structure through intermolecular O—H...O and C—H...O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xinzhao Xia ◽  
Lixian Xia ◽  
Geng Zhang ◽  
Yuxuan Jiang ◽  
Fugang Sun ◽  
...  

Abstract In this work, a new type of zinc(II) coordination polymer {[Zn(HIDC)(BBM)0.5]·H2O} n (Zn-CP) was synthesized using 4,5-imidazoledicarboxylic acid (H3IDC) and 2,2-(1,4-butanediyl)bis-1,3-benzimidazole (BBM) under hydrothermal conditions. Its structure has been characterized by infrared spectroscopy, elemental analysis and single crystal X-ray diffraction analysis. The Zn(II) ion is linked by the HIDC2− ligand to form a zigzag chain by chelating and bridging, and then linked by BBM to form a layered network structure. Adjacent layers are further connected by hydrogen bond interaction to form a 3-D supramolecular framework. The solid-state fluorescence performance of Zn-CP shows that compared with free H3IDC ligand, its fluorescence intensity is significantly enhanced.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kai-Long Zhong ◽  
Jing Quan ◽  
Xian-Xiao Pan ◽  
Wei Song ◽  
Bing-Feng Li

Abstract A new cadmium(II)-based coordination polymer [Cd3(FcCOO)6(4,4′-bipy)(H2O)2] n (FcCOO = ferrocenecarboxylato and 4,4′-bipy = 4,4′-bipyridine) has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The results of a crystal structural analysis has revealed that the title compound consists of two crystallographically unique CdII centers, one in a general position with a five-coordinated and one on an inversion center with a six-coordinated environment. The CdII centers are connected by FcCOO− units to form a metal carboxylate oxygen chain extending parallel to the [100] direction while the 4,4′-bipy ligands further act as bridging linkers of the CdII centers resulting in a layered polymer. In addition, an X-ray powder diffraction and thermal gravimetric analysis and a cyclo-voltammetric characterization of the complex have also been carried out.


2021 ◽  
Vol 25 (7) ◽  
pp. 147-156
Author(s):  
Ajeet Kumar Maurya ◽  
Ashish Kumar Srivastava ◽  
Krishna Srivastava ◽  
Jagdish Prasad

Four mixed-ligand coordination polymer complexes of cobalt(II), copper(II), zinc(II), and cadmium(II) were synthesized by solvothermal method in 1:1:1 metal: 4,4’-bipy: 2,5-pdc molar ratio using 2,5-pyridinedicarboxylic acid (2,5-pdc) and 4,4’-bipyridine (4,4’-bipy). These complexes are viz; 1. [Co2(4,4'-bipy)(2,5-pdc)2(H2O)4]n 2. [Cu2(4,4'-bipy) (2,5-pdc)2]n 3. [Zn2(4,4'-bipy)(2,5-pdc)2(H2O)4]n and 4. [Cd3(4,4'-bipy)(2,5-pdc)2(OOCCH3)2(H2O)4]n.. All these complexes (1-4) have been characterized by elemental analyses (C,H,N), FT-IR-spectra, thermal analyses (TGA/DTA/DTG), fluorescence spectra and powder X-ray diffraction (PXRD) analyses to arrive at conclusion regarding their geometrical structure.


2020 ◽  
Vol 76 (5) ◽  
pp. 500-506
Author(s):  
Kamil Twaróg ◽  
Małgorzata Hołyńska ◽  
Andrzej Kochel

Employment of the organic 2-(pyridin-4-yl)quinoline-4-carboxylic acid ligand with extended coordination capabilities leads to the formation of the one-dimensional copper(II) coordination polymer catena-poly[[diaquacopper(II)]-bis[μ-2-(pyridin-4-yl)quinoline-4-carboxylato]-κ2 N 2:O;κ2 O:N], {[Cu(C15H9N2O2)2(H2O)2]·2H2O} n , under hydrothermal conditions. The ligand, isolated as its hydrochloride salt, namely, 4-(4-carboxyquinolin-2-yl)pyridinium chloride monohydrate, C15H11N2O2 +·Cl−·H2O, reveals a pseudosymmetry element (translation a/2) in its crystal structure. The additional pyridyl N atom, in comparison with the previously reported analogues with an arene ring instead of the pyridyl ring in the present ligand molecule, promotes the formation of a one-dimensional coordination polymer, rather than discrete molecules. This polymer shows photoluminescent properties with bathochromic/hypsochromic shifts of the ligand absorption bands, leading to a single band at 479 nm. The CuII ions are involved in weak antiferromagnetic interactions within dimeric units, as evidenced by SQUID magnetometry.


Sign in / Sign up

Export Citation Format

Share Document