Organic−Inorganic Hybrid Aligned by the Ligand−Ligand Hydrogen Bonds by Using Pyridyl-Substituted Oxalamides as the Building Blocks

2008 ◽  
Vol 8 (3) ◽  
pp. 869-876 ◽  
Author(s):  
Qingdao Zeng ◽  
Min Li ◽  
Dongxia Wu ◽  
Shengbin Lei ◽  
Caiming Liu ◽  
...  
CrystEngComm ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 2384-2395
Author(s):  
Ivan A. Mezentsev-Cherkes ◽  
Tatiana A. Shestimerova ◽  
Aleksei V. Medved'ko ◽  
Mikhail A. Kalinin ◽  
Alexey N. Kuznetsov ◽  
...  

Adamantane-like divalent building blocks and iodide or polyiodide anions combine into supramolecular architectures with the help of various noncovalent forces ranging from strong hydrogen bonds to secondary and weak I⋯I interactions.


2007 ◽  
Vol 62 (10) ◽  
pp. 1235-1245 ◽  
Author(s):  
Simone Schnabel ◽  
Caroline Röhr

Stoichiometric hydrates of Li3VO4, the hexahydrate and two polymorphs of the octahydrate, were prepared by evaporation of alkaline aqueous solutions 1 molar in LiOH and 0.5 molar in the metavanadate LiVO3 at r. t. with or without the addition of Lithium sulfide, i. e. at different pH values. Their crystal structures have been determined and refined using single crystal X-ray data; all lithium and hydrogen atom positions were localised and refined without contraints. All three title compounds crystallise in non-centrosymmetric space groups. The water molecules belong to the tetrahedral coordination spheres of the Li cations, i. e. they are embedded as water of coordination exclusively. The tetrahedral orthovanadate(V) anions VO3−4 and the LiO4 tetrahedra are connected via common O corners to form building units which are further held together by strong, nearly linear hydrogen bonds. The hexahydrate Li3VO4 ・ 6H2O (space group R3, a = 962.9(2), c = 869.2(2) pm, Z = 3, R1 = 0.0260) contains isolated orthovanadate(V) anions VO3−4 surrounded by a 3D network of cornersharing Li(H2O)4 tetrahedra forming rings of three, seven and eight units. The water molecules are ‘isolated’ in the sense that no hydrogen bonds are formed between water molecules. The octahydrate is dimorphous: The triclinic polymorph of Li3VO4 ・ 8H2O (space group P1, a = 592.6(2), b = 651.3(2), c = 730.2(4) pm, α = 89.09(2), β = 89.43(2), γ = 88.968(12)°, Z = 1, R1 = 0.0325) contains two types of chains of tetrahedra: One consists of corner-sharing Li(H2O)4 tetrahedra only, the second one is formed by alternating LiO4 and VO4 tetrahedra, also sharing oxygen corners. Only one water molecule is ‘isolated’, the other seven form a branched fragment of a chain with hydrogen bonds between them. In the monoclinic form of Li3VO4・8H2O (space group Pc, a = 732.6(1), b = 653.7(1), c = 1292.9(3) pm, β = 112.21(1)°, Z = 2, R1 = 0.0289) a fragment of a chain of three LiO4 tetrahedra, two of which share a common edge, and one VO4 tetrahedron represent the formular unit. These building blocks are connected via hydrogen bonds formed by three ‘isolated’ water molecules and a chain fragment of five connected water molecules.


2022 ◽  
Author(s):  
Jamie M. Cameron ◽  
Geoffroy Guillemot ◽  
Theodor Galambos ◽  
Sharad S. Amin ◽  
Elizabeth Hampson ◽  
...  

Organic–inorganic hybrid polyoxometalates are versatile building blocks for the self-assembly of functional supramolecular materials.


2001 ◽  
Vol 57 (6) ◽  
pp. 859-865 ◽  
Author(s):  
Gastone Gilli ◽  
Valerio Bertolasi ◽  
Paola Gilli ◽  
Valeria Ferretti

Squaric acid, H2C4O4 (H2SQ), is a completely flat diprotic acid that can crystallize as such, as well as in three different anionic forms, i.e. H2SQ·HSQ−, HSQ− and SQ2−. Its interest for crystal engineering studies arises from three notable factors: (i) its ability of donating and accepting hydrogen bonds strictly confined to the molecular plane; (ii) the remarkable strength of the O—H...O bonds it may form with itself which are either of resonance-assisted (RAHB) or negative-charge-assisted [(−)CAHB] types; (iii) the ease with which it may donate a proton to an aromatic base which, in turn, back-links to the anion by strong low-barrier N—H+...O1/2− charge-assisted hydrogen bonds. Analysis of all the structures so far known shows that, while H2SQ can only crystallize in an extended RAHB-linked planar arrangement and SQ2− tends to behave much as a monomeric dianion, the monoanion HSQ− displays a number of different supramolecular patterns that are classifiable as β-chains, α-chains, α-dimers and α-tetramers. Partial protonation of these motifs leads to H2SQ·HSQ− anions whose supramolecular patterns include ribbons of dimerized β-chains and chains of emiprotonated α-dimers. The topological similarities between the three-dimensional crystal chemistry of orthosilicic acid, H4SiO4, and the two-dimensional one of squaric acid, H2C4O4, are finally stressed.


2000 ◽  
Vol 56 (2) ◽  
pp. 273-286 ◽  
Author(s):  
Brian O'Leary ◽  
Trevor R. Spalding ◽  
George Ferguson ◽  
Christopher Glidewell

The structure of 1,1,3,3,5,5-hexaphenyltrisiloxane-1,5-diol–pyrazine (4/1), (C36H32O4Si3)4·C4H4N2 (1), contains finite centrosymmetric aggregates; the diol units form dimers, by means of O—H...O hydrogen bonds, and pairs of such dimers are linked to the pyrazine by means of O—H...N hydrogen bonds. In 1,1,3,3,5,5-hexaphenyltrisiloxane-1,5-diol–pyridine (2/3), (C36H32O4Si3)2·(C5H5N)3 (2), the diol units are linked into centrosymmetric pairs by means of disordered O—H...O hydrogen bonds: two of the three pyridine molecules are linked to the diol dimer by means of ordered O—H...N hydrogen bonds, while the third pyridine unit, which is disordered across a centre of inversion, links the diol dimers into a C 3 3(9) chain by means of O—H...N and C—H...O hydrogen bonds. In 1,1,3,3-tetraphenyldisiloxane-1,3-diol–hexamethylenetetramine (1/1), (C24H22O3Si2)·C6H12N4 (3), the diol acts as a double donor and the hexamethylenetetramine acts as a double acceptor in ordered O—H...N hydrogen bonds and the structure consists of C 2 2(10) chains of alternating diol and amine units. In 1,1,3,3-tetraphenyldisiloxane-1,3-diol–2,2′-bipyridyl (1/1), C24H22O3Si2·C10H8N2 (4), there are two independent diol molecules, both lying across centres of inversion and therefore both containing linear Si—O—Si groups: each diol acts as a double donor of hydrogen bonds and the unique 2,2′-bipyridyl molecule acts as a double acceptor, thus forming C 2 2(11) chains of alternating diol and amine units. The structural motif in 1,1,3,3-tetraphenyldisiloxane-1,3-diol–pyrazine (2/1), (C24H22O3Si2)2·C4H4N2 (5), is a chain-of-rings: pairs of diol molecules are linked by O—H...O hydrogen bonds into centrosymmetric R 2 2(12) dimers and these dimers are linked into C 2 2(13) chains by means of O—H...N hydrogen bonds to the pyrazine units. 1,1,3,3-Tetraphenyldisiloxane-1,3-diol–pyridine (1/1), C24H22O3Si2·C5H5N (6), and 1,1,3,3-tetraphenyldisiloxane-1,3-diol–pyrimidine (1/1), C24H22O3Si2·C4H4N2 (7), are isomorphous: in each compound the amine unit is disordered across a centre of inversion. The diol molecules form C(6) chains, by means of disordered O—H...O hydrogen bonds, and these chains are linked into two-dimensional nets built from R 6 6(26) rings, by a combination of O—H...N and C—H...O hydrogen bonds.


2014 ◽  
Vol 997 ◽  
pp. 260-263 ◽  
Author(s):  
Ya Bing Liu ◽  
Peng Yu

A new polyoxovanadates-based organic-inorganic hybrid compound, [Cu(en)2]2[VV6VIV4O25] (1) has been hydrothermally synthesized and structurally characterized by the elemental analysis, and single crystal X-ray diffraction. Compound 1 consists of [Cu(en)2]2+transition metal coordination fragment and the [VV6VIV4O25]4-building blocks, which are linked together via covalently-bonding interactions to form a new 3-D networks. The degradation of rhodamine B (RhB) under UV-vis irradiation with 1 as the heterogeneous photocatalyst has been investigated, showing a good photocatalytic property of 1 for RhB degradation.


2003 ◽  
Vol 59 (1) ◽  
pp. 100-117 ◽  
Author(s):  
Katharine F. Bowes ◽  
George Ferguson ◽  
Alan J. Lough ◽  
Christopher Glidewell

Maleic acid and fumaric acid both readily form adducts with organic diamines: maleic acid usually forms 2:1 adducts with bases, while fumaric acid usually forms 1:1 adducts, and the supramolecular stuctures within the two series are not simply related. The 1:2 adducts formed by 1,2-bis(4-pyridyl)ethane and by 4,4′-bipyridyl, respectively, with maleic acid, compounds (1) and (2), are salts [{(diamine)H2}2+]·[(C4H3O4)−]2 in which the cations lie across a centre of inversion and a twofold rotation axis, respectively. The ions are linked by N—H...O hydrogen bonds into three-ion aggregates, which are further linked by C—H...O hydrogen bonds into two- and three-dimensional arrays, respectively. In the fumarate salts formed by 2,2′-dipyridylamine (1:1) and 1,4-diazabicyclo[2.2.2]octane (1:2), compounds (3) and (4), the ionic components are linked into molecular ladders. The 1:1 adduct of 4,4′-bipyridyl and fumaric acid, compound (5), contains two neutral components, both of which lie across centres of inversion; these components are linked into chains by a single O—H...N hydrogen bond and thence into sheets by C—H...O hydrogen bonds. The corresponding adduct formed by 1,4-diazabicyclo[2.2.2]octane, compound (6), is a salt that again contains chains linked into sheets by C—H...O hydrogen bonds. In the 1:1 adducts, compounds (7), (8) and (10), that are formed between 1,2-bis(4-pyridyl)ethane, 4,4′-trimethylenedipyridine and hexamethylenetetramine, respectively, with fumaric acid, and in the 1:2 adduct, compound (9), of 2,2′-dipyridylamine and maleic acid, the chains that are generated by the hard hydrogen bonds are linked by C—H...O hydrogen bonds to form, in each case, a single three-dimensional framework. In the 1:1 adduct, compound (11), of 2,2′-bipyridyl and fumaric acid the hydrogen bonds generate two interwoven three-dimensional frameworks.


2007 ◽  
Vol 79 (6) ◽  
pp. 1087-1096 ◽  
Author(s):  
Michał J. Chmielewski ◽  
Tomasz Zieliński ◽  
Janusz Jurczak

Understanding of structure-affinity relationships is crucial for rational receptor design, however, such studies for anion receptors are still limited. Therefore, we investigated this issue in the case of amide-based macrocyclic receptors derived from aromatic diacids (i.e., isophthalic and dipicolinic). Using these model compounds, we examined the macrocyclic effect, the influence of intramolecular hydrogen bonds, and the correlation between the ring size and anion affinity. We found that in contrast to what was known for acyclic diamides, macrocyclic isophthalamide receptors bind anions more weakly than their dipicolinic analogs. Comprehensive structural studies revealed that such behavior is due to intramolecular hydrogen bonds present in isophthalamide receptors. Furthermore, we demonstrated how this obstacle can be overcome by the preparation of a hybrid macrocycle based on both building blocks.


2012 ◽  
Vol 2013 (7) ◽  
pp. 1149-1156 ◽  
Author(s):  
Sylvain Duval ◽  
Frédéric Dumur ◽  
Laure Guénée ◽  
Jérôme Marrot ◽  
Corine Simonnet-Jégat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document