Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density

2014 ◽  
Vol 14 (11) ◽  
pp. 5397-5407 ◽  
Author(s):  
Andrey A. Yakovenko ◽  
Zhangwen Wei ◽  
Mario Wriedt ◽  
Jian-Rong Li ◽  
Gregory J. Halder ◽  
...  
2021 ◽  
Vol 47 (9) ◽  
pp. 593-600
Author(s):  
A. A. Lysova ◽  
V. A. Dubskikh ◽  
K. D. Abasheeva ◽  
A. A. Vasileva ◽  
D. G. Samsonenko ◽  
...  

Abstract Three new metal−organic frameworks based on scandium(III) cations and 2,5-thiophenedicarboxylic acid (H2Tdc) are synthesized: [Sc(Tdc)(OH)]·1.2DMF (I), [Sc(Tdc)(OH)]·2/3DMF (II), and (Me2NH2)[Sc3(Tdc)4(OH)2]·DMF (III) (DMF is N,N-dimethylformamide). The structures of the compounds are determined by single-crystal X-ray structure analysis (CIF file CCDC nos. 2067819 (I), 2067820 (II), and 2067821 (III)). The chemical and phase purity of compound I is proved by elemental analysis, thermogravimetry, X-ray diffraction analysis, and IR spectroscopy.


2021 ◽  
Author(s):  
Barbora Brachnakova ◽  
Jan Moncol ◽  
Jan Pavlik ◽  
Ivan Salitros ◽  
Sébastien Bonhommeau ◽  
...  

Three Hofmann-like metal-organic frameworks {Fe(bpac)[Pt(CN)4]}·G (bpac=1,2-bis(4-pyridyl)acetylene) were synthesized with photoisomerizable guest molecules (G = trans-azobenzene, trans-stilbene or cis-stilbene) and were characterized by elemental analysis, thermogravimetry and powder X-ray diffraction. The...


2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


2020 ◽  
Vol 75 (8) ◽  
pp. 727-732
Author(s):  
Chen Zhang ◽  
Jian-Qing Tao

AbstractA new Cu(II) metal-organic framework, [Cu(L)(OBA)·H2O]n (1) [H2OBA = 4,4′-oxybis(benzoic acid), L = 3,5-di(1H-benzimidazol-1-yl)pyridine] was hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis and single-crystal X-ray diffraction. Complex 1 is a four-connected uni-nodal 2D net with a (44·62) topology which shows an emission centered at λ ∼393 nm upon excitation at λ = 245 nm. Moreover, complex 1 possesses high photocatalytic activities for the decomposition of Rhodamine B (RhB) under UV light irradiation.


Author(s):  
Stephen J. I. Shearan ◽  
Jannick Jacobsen ◽  
Ferdinando Costantino ◽  
Roberto D’Amato ◽  
Dmitri Novikov ◽  
...  

2021 ◽  
Author(s):  
Qing-Xia Yao ◽  
Miaomiao Tian ◽  
Jun Zheng ◽  
Jintang Xue ◽  
Xuze Pan ◽  
...  

A series of microporous Ln(III)-based metal-organic frameworks (1-Ln) have been hydrothermally synthesized by using 4,4',4''-nitrilotribenzoic acid (H3NTB). Single crystal X-ray diffraction analyses show 1-Ln are isostructural and have 3D porous...


2014 ◽  
Vol 70 (a1) ◽  
pp. C157-C157
Author(s):  
Claire Hobday ◽  
Stephen Moggach ◽  
Carole Morrison ◽  
Tina Duren ◽  
Ross Forgan

Metal-organic frameworks (MOFs) are a well-studied class of porous materials with the potential to be used in many applications such as gas storage and catalysis.[1] UiO-67 (UiO = University of Oslo), a MOF built from zirconium oxide units connected with 4,4-biphenyldicarboxylate (BDC) linkers, forms a face centred cubic structure. Zirconium has a high affinity towards oxygen ligands making these bridges very strong, resulting in UiO-based MOFs having high chemical and thermal stability compared to other MOF structures. Moreover, UiO-67 has become popular in engineering studies due to its high mechanical stability.[2] Using high pressure x-ray crystallography we can exert MOFs to GPa pressures, experimentally exploring the mechanical stability of MOFs to external pressure. By immersing the crystal in a hydrostatic medium, pressure is applied evenly to the crystal. On surrounding a porous MOF with a hydrostatic medium composed of small molecules (e.g. methanol), the medium can penetrate the MOF, resulting in medium-dependant compression. On compressing MOF-5 (Zn4O(BDC)3) using diethylformamide as a penetrating medium, the framework was shown to have an increased resistance to compression, becoming amorphous several orders of magnitude higher in pressure than observed on grinding the sample.[3] Here we present a high-pressure x-ray diffraction study on the UiO-based MOF UiO-67, and several new synthesised derivatives built from same metal node but with altered organic linkers, allowing us to study in a systematic way, the mechanical stability of the MOF, and its pressure dependence on both the linker, and pressure medium.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Xie ◽  
Jie Wu ◽  
Xiaochun Hang ◽  
Honghai Zhang ◽  
Kang shen ◽  
...  

By employment of amino-functionalized dicarboxylate ligands to react with d10 metal ions, four novel metal-organic frameworks (MOFs) were obtained with the formula of {[Cd(BCPAB)(μ2-H2O)]}n (1), {[Cd(BDAB)]∙2H2O∙DMF}n (2), {[Zn(BDAB)(BPD)0.5(H2O)]∙2H2O}n (3) and {[Zn(BDAB)(DBPB)0.5(H2O)]∙2H2O}n (4) (H2BCPAB = 2,5-bis(p-carbonylphenyl)-1-aminobenzene; H2BDAB = 1,2-diamino-3,6-bis(4-carboxyphenyl)benzene); BPD = (4,4′-bipyridine); DBPB = (E,E-2,5-dimethoxy-1,4-bis-[2-pyridin-vinyl]-benzene; DMF = N,N-dimethylformamide). Complex 1 is a three-dimensional (3D) framework bearing seh-3,5-Pbca nets with point symbol of {4.62}{4.67.82}. Complex 2 exhibits a 4,4-connected new topology that has never been reported before with point symbol of {42.84}. Complex 3 and 4 are quite similar in structure and both have 3D supramolecular frameworks formed by 6-fold and 8-fold interpenetrated 2D coordination layers. The structures of these complexes were characterized by single crystal X-ray diffraction (SC-XRD), thermal gravimetric analysis (TGA) and powder X-ray diffraction (PXRD) measurements. In addition, the fluorescence properties and the sensing capability of 2–4 were investigated as well and the results indicated that complex 2 could function as sensor for Cu2+ and complex 3 could detect Cu2+ and Ag+via quenching effect.


2020 ◽  
Author(s):  
Stephen Shearan ◽  
Jannick Jacobsen ◽  
Ferdinando Costantino ◽  
Roberto D’Amato ◽  
Dmitri Novikov ◽  
...  

We report on the results of a thorough <i>in situ</i> synchrotron powder X-ray diffraction study of the crystallisation in aqueous medium of two recently discovered perfluorinated Ce(IV)-based metal-organic frameworks (MOFs), analogues of the already well investigated Zr(IV)-based UiO-66 and MIL-140A, namely, F4_UiO-66(Ce) and F4_MIL-140A(Ce). The two MOFs were originally obtained in pure form in similar conditions, using ammonium cerium nitrate and tetrafluoroterephthalic acid as building blocks, and small variations of the reaction parameters were found to yield mixed phases. Here, we investigate the crystallisation of these compounds <i>in situ</i> in a wide range of conditions, varying parameters such as temperature, amount of the protonation modulator nitric acid (HNO<sub>3</sub>) and amount of the coordination modulator acetic acid (AcOH). When only HNO<sub>3</sub> is present in the reaction environment, F4_MIL-140A(Ce) is obtained as a pure phase. Heating preferentially accelerates nucleation, which becomes rate determining below 57 °C, whereas the modulator influences nucleation and crystal growth to a similar extent. Upon addition of AcOH to the system, alongside HNO<sub>3</sub>, mixed-phased products, consisting of F4_MIL-140A(Ce) and F4_UiO-66(Ce), are obtained. In these conditions, F4_UiO-66(Ce) is always formed faster and no interconversion between the two phases occurs. In the case of F4_UiO-66(Ce), crystal growth is always the rate determining step. An increase in the amount of HNO<sub>3</sub> slows down both nucleation and growth rates for F4_MIL-140A(Ce), whereas nucleation is mainly affected for F4_UiO-66(Ce). In addition, a higher amount HNO<sub>3</sub> favours the formation of F4_MIL-140A(Ce). Similarly, increasing the amount of AcOH leads to slowing down of the nucleation and growth rate, but favours the formation of F4_UiO-66(Ce). The pure F4_UiO-66(Ce) phase could also be obtained when using larger amounts of AcOH in the presence of minimal HNO<sub>3</sub>. Based on these <i>in situ</i> results, a new optimised route to achieving a pure, high quality F4_MIL-140A(Ce) phase in mild conditions (60 °C, 1 h) is also identified.


Sign in / Sign up

Export Citation Format

Share Document