One-Pot Synthesis of Supramolecular Isomers with Two-Dimensional 44Grid and Three-Dimensional 64·82NbO Frameworks: Solvothermal in Situ Ligand Formation and Conformational Isomers Separation

2008 ◽  
Vol 8 (10) ◽  
pp. 3504-3507 ◽  
Author(s):  
Lei Han ◽  
Wenna Zhao ◽  
Yan Zhou ◽  
Xing Li ◽  
Jianguo Pan
2020 ◽  
Vol 56 (78) ◽  
pp. 11645-11648
Author(s):  
Huangqing Ye ◽  
Jiahui Chen ◽  
Yougen Hu ◽  
Gang Li ◽  
Xian-Zhu Fu ◽  
...  

Two-dimensional (2D) multilayered graphitic carbon nanosheets are prepared via a facile, green, and mild method of one-pot hydrothermal carbonization at a temperature below 300 °C.


2020 ◽  
Vol 24 (8) ◽  
pp. 900-908
Author(s):  
Ram Naresh Yadav ◽  
Amrendra K Singh ◽  
Bimal Banik

Numerous O (oxa)- and S (thia)-glycosyl esters and their analogous glycosyl acids have been accomplished through stereoselective glycosylation of various peracetylated bromo sugar with benzyl glycolate using InBr3 as a glycosyl promotor followed by in situ hydrogenolysis of resulting glycosyl ester. A tandem glycosylating and hydrogenolytic activity of InBr3 has been successfully investigated in a one-pot procedure. The resulting synthetically valuable and virtually unexplored class of β-CMGL (glycosyl acids) could serve as an excellent potential chiral auxiliary in the asymmetric synthesis of a wide range of enantiomerically pure medicinally prevalent β-lactams and other bioactive molecules of diverse medicinal interest.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 929
Author(s):  
Xudong Yang ◽  
Zexiao Li ◽  
Linlin Zhu ◽  
Yuchu Dong ◽  
Lei Liu ◽  
...  

Taper-cutting experiments are important means of exploring the nano-cutting mechanisms of hard and brittle materials. Under current cutting conditions, the brittle-ductile transition depth (BDTD) of a material can be obtained through a taper-cutting experiment. However, taper-cutting experiments mostly rely on ultra-precision machining tools, which have a low efficiency and high cost, and it is thus difficult to realize in situ measurements. For taper-cut surfaces, three-dimensional microscopy and two-dimensional image calculation methods are generally used to obtain the BDTDs of materials, which have a great degree of subjectivity, leading to low accuracy. In this paper, an integrated system-processing platform is designed and established in order to realize the processing, measurement, and evaluation of taper-cutting experiments on hard and brittle materials. A spectral confocal sensor is introduced to assist in the assembly and adjustment of the workpiece. This system can directly perform taper-cutting experiments rather than using ultra-precision machining tools, and a small white light interference sensor is integrated for in situ measurement of the three-dimensional topography of the cutting surface. A method for the calculation of BDTD is proposed in order to accurately obtain the BDTDs of materials based on three-dimensional data that are supplemented by two-dimensional images. The results show that the cutting effects of the integrated platform on taper cutting have a strong agreement with the effects of ultra-precision machining tools, thus proving the stability and reliability of the integrated platform. The two-dimensional image measurement results show that the proposed measurement method is accurate and feasible. Finally, microstructure arrays were fabricated on the integrated platform as a typical case of a high-precision application.


Author(s):  
Romana Pajkert ◽  
Henryk Koroniak ◽  
Pawel Kafarski ◽  
Gerd Volker Roeschenthaler

A one-pot, regioselective 1,3-dipolar cycloaddition of in situ generated (diethoxyphosphoryl)difluoromethyl nitrile oxide toward selected alkenes and alkynes is reported. This protocol enables facile access to 3,5-disubstituted isoxazolines and isoxazoles bearing...


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1466
Author(s):  
Ye Eun Kim ◽  
Hyunsung Cho ◽  
Yoo Jin Lim ◽  
Chorong Kim ◽  
Sang Hyup Lee

Studies on a one-pot synthesis of novel multisubstituted 1-alkoxyindoles 1 and their mechanistic investigations are presented. The synthesis of 1 was successfully achieved through consecutive four step reactions from substrates 2. The substrates 2, prepared through a two-step synthetic sequence, underwent three consecutive reactions of nitro reduction, intramolecular condensation, and nucleophilic 1,5-addition to provide the intermediates, 1-hydroxyindoles 8, which then were alkylated in situ with alkyl halide to afford the novel target products 1. We optimized the reaction conditions for 1 focusing on the alkylation step, along with the consideration of formation of intermediates 8. The optimized condition was SnCl2·2H2O (3.3 eq) and alcohols (R1OH, 2.0 eq) for 1–2 h at 40 °C and then, base (10 eq) and alkyl halides (R2Y, 2.0 eq) for 1–4 h at 25–50 °C. Notably, all four step reactions were performed in one-pot to give 1 in good to modest yields. Furthermore, the mechanistic aspects were also discussed regarding the reaction pathways and the formation of side products. The significance lies in development of efficient one-pot reactions and in generation of new 1-alkoxyindoles.


2007 ◽  
Vol 40 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Hakan Durmaz ◽  
Aydan Dag ◽  
Ozcan Altintas ◽  
Tuba Erdogan ◽  
Gurkan Hizal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document