New Colloidal Stability Index for Crude Oils Based on Polarity of Crude Oil Components

2010 ◽  
Vol 24 (12) ◽  
pp. 6483-6488 ◽  
Author(s):  
Victor V. Likhatsky ◽  
Rustem Z. Syunyaev
Author(s):  
Abdus Saboor ◽  
Nimra Yousaf ◽  
Javed Haneef ◽  
Syed Imran Ali ◽  
Shaine Mohammadali Lalji

AbstractAsphaltene Precipitation is a major issue in both upstream and downstream sectors of the Petroleum Industry. This problem could occur at different locations of the hydrocarbon production system i.e., in the reservoir, wellbore, flowlines network, separation and refining facilities, and during transportation process. Asphaltene precipitation begins due to certain factors which include variation in crude oil composition, changes in pressure and temperature, and electrokinetic effects. Asphaltene deposition may offer severe technical and economic challenges to operating Exploration and Production companies with respect to losses in hydrocarbon production, facilities damages, and costly preventive and treatment solutions. Therefore, asphaltene stability monitoring in crude oils is necessary for the prevention of aggravation of problem related to the asphaltene deposition. This study will discuss the performance of eleven different stability parameters or models already developed by researchers for the monitoring of asphaltene stability in crude oils. These stability parameters include Colloidal Instability Index, Stability Index, Colloidal Stability Index, Chamkalani’s stability classifier, Jamaluddin’s method, Modified Jamaluddin’s method, Stankiewicz plot, QQA plots and SCP plots. The advantage of implementing these stability models is that they utilize less input data as compared to other conventional modeling techniques. Moreover, these stability parameters also provide quick crude oils stability outcomes than expensive experimental methods like Heithaus parameter, Toluene equivalence, spot test, and oil compatibility model. This research study will also evaluate the accuracies of stability parameters by their implementation on different stability known crude oil samples present in the published literature. The drawbacks and limitations associated with these applied stability parameters will also be presented and discussed in detail. This research found that CSI performed best as compared to other SARA based stability predicting models. However, considering the limitation of CSI and other predictors, a new predictor, namely ANJIS (Abdus, Nimra, Javed, Imran & Shaine) Asphaltene stability predicting model is proposed. ANJIS when used on oil sample of different conditions show reasonable accuracy. The study helps Petroleum companies, both upstream and downstream sector, to determine the best possible SARA based parameter and its associated risk used for the screening of asphaltene stability in crude oils.


Resources ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 75
Author(s):  
Ivelina K. Shishkova ◽  
Dicho S. Stratiev ◽  
Mariana P. Tavlieva ◽  
Rosen K. Dinkov ◽  
Dobromir Yordanov ◽  
...  

Thirty crude oils, belonging to light, medium, heavy, and extra heavy, light sulfur, and high sulfur have been characterized and compatibility indices defined. Nine crude oil compatibility indices have been employed to evaluate the compatibility of crude blends from the thirty individual crude oils. Intercriteria analysis revealed the relations between the different compatibility indices, and the different petroleum properties. Tetra-plot was employed to model crude blend compatibility. The ratio of solubility blending number to insolubility number was found to best describe the desalting efficiency, and therefore could be considered as the compatible index that best models the crude oil blend compatibility. Density of crude oil and the n-heptane dilution test seem to be sufficient to model, and predict the compatibility of crude blends.


1999 ◽  
Vol 17 (3-4) ◽  
pp. 349-368 ◽  
Author(s):  
Horst Laux ◽  
Iradj Rahimian ◽  
Peter Schorling

1985 ◽  
Vol 25 (02) ◽  
pp. 171-175 ◽  
Author(s):  
I.C. Callaghan ◽  
A.L. McKechnie ◽  
J.E. Ray ◽  
J.C. Wainwright

Abstract The foaming characteristics of a number of crude oils from a variety of sources were determined by Bikerman's pneumatic method. Extraction of these crudes with both pneumatic method. Extraction of these crudes with both alkali and acid indicated that the crude oil components responsible for the foam stability were removed by the alkali extraction. Further examination of the alkali extract revealed that after neutralization it was the chloroform soluble part of this extract (0.02% wt% of the whole crude) that was responsible for the foaming properties of the crudes investigated. This latter point was confirmed by demonstrating that the surface rheological properties of one of the extracted crudes could be restored by adding back the chloroform-soluble portion of the neutralized alkali extract. Analysis of this extract indicated that the foam-stabilizing materials were short-chain carboxylic acids and phenols of molecular weight -400. In principle, such analytical information could be used to identify principle, such analytical information could be used to identify crude oils likely to present severe foaming problems in the field. Such information could enable the process engineer to take appropriate corrective measures early in the life of a new field, thus avoiding the need for high capital expenditure at a later stage. Introduction Crude oil foams can pose major problems for operators of gas/oil separation plants, causing a loss of crude in the separated gas stream and consequent loss of revenue and possible damage to downstream compressors. Thus, an possible damage to downstream compressors. Thus, an understanding of the factors controlling crude oil foam stability is highly desirable, since it should lead to better methods of foam prediction and control. With this end in mind, we have attempted to identify those crude oil components responsible for foam stabilization. This paper outlines our findings to date and attempts to demonstrate that a similar suite of compounds is responsible for the stabilization of a wide range of crude oil foams. Experimental Materials Crude Oils. Chemical-free samples of 16 different stock-tank crude oils were obtained from a variety of sources (see Table 1). Particular care was taken to ensure that these samples were stored under nitrogen to prevent oxidation of the crudes. prevent oxidation of the crudes. Reagents used were cyclohexane, spectroscopic grade (from BDH); chloroform, general purpose reagent grade (from BDH); diethyl ether, general purpose reagent grade (from BDH); sodium hydroxide pellets, technical grade (from BDH); and SIL-PREP reagent: Applied Science Laboratories Ltd. All solvents were distilled before use, and only an 80% heart cut was taken. Techniques Foaminess Index Measurements. The foaming column used in this work consisted of a graduated glass tube approximately 30 cm [12 in.] in length with two fine sintered glass disks placed 1 cm [0.4 in.] apart, situated at the base of the tube just above the gas inlet. The gas used to create the foam is admitted to the column by way of a pressure reduction and flow meter assembly (see Ref. 1). The measurements were initiated by pipetting an aliquot of crude oil, just sufficient to cover the upper sintered disk, into the foaming column. The oil was allowed to spread over the sintered disk. Compressed air (or natural gas), flowing at a constant rate (40 cm3/sec [40 mL/min]), then was admitted to the column by way of the sintered disk and the crude oil was taken up into the froth. The bubbling was continued for 5 minutes after all the liquid had been taken up into the foam. When a homogeneous foam had been achieved, the height of the upper foam/gas interface was recorded. Three runs were performed on each crude oil studied. The foaminess index performed on each crude oil studied. The foaminess index (E) of each of the stripped and complete stock-tank crude oils then was determined by Bikerman's method. (1) where V, is the constant foam volume at time t and V is the volume of gas injected during time t. Extraction of Crude Oil Surfactants. Treatment with dilute aqueous sodium hydroxide solution was found to be the best means of extracting the acidic components in the crude oils. The oils were dissolved in cyclohexane to give 10% vol/vol solutions, thereby reducing viscosity and thus facilitating rapid phase separation. Despite this precaution some oil still was removed with the aqueous precaution some oil still was removed with the aqueous phase, which necessitated thorough back extraction with phase, which necessitated thorough back extraction with fresh solvent to ensure the selectivity of the separation. The sodium salts in the aqueous extract then were converted back to the free acids by treatment with excess mineral acid. The concentrate obtained was derived for analysis by combined gas chromatography/mass spectrometry (GC/MS). SPEJ P. 171


2018 ◽  
Vol 5 (1) ◽  
pp. 43-54
Author(s):  
Suresh Aluvihara ◽  
Jagath K Premachandra

Corrosion is a severe matter regarding the most of metal using industries such as the crude oil refining. The formation of the oxides, sulfides or hydroxides on the surface of metal due to the chemical reaction between metals and surrounding is the corrosion that  highly depended on the corrosive properties of crude oil as well as the chemical composition of ferrous metals since it was expected to investigate the effect of Murban and Das blend crude oils on the rate of corrosion of seven different ferrous metals which are used in the crude oil refining industry and investigate the change in hardness of metals. The sulfur content, acidity and salt content of each crude oil were determined. A series of similar pieces of seven different types of ferrous metals were immersed in each crude oil separately and their rates of corrosion were determined by using their relative weight loss after 15, 30 and 45 days. The corroded metal surfaces were observed under the microscope. The hardness of each metal piece was tested before the immersion in crude oil and after the corrosion with the aid of Vicker’s hardness tester. The metallic concentrations of each crude oil sample were tested using atomic absorption spectroscopy (AAS). The Das blend crude oil contained higher sulfur content and acidity than Murban crude oil. Carbon steel metal pieces showed the highest corrosion rates whereas the stainless steel metal pieces showed the least corrosion rates in both crude oils since that found significant Fe and Cu concentrations from some of crude oil samples. The mild steel and the Monel showed relatively intermediate corrosion rates compared to the other types of ferrous metal pieces in both crude oils. There was a slight decrease in the initial hardness of all the ferrous metal pieces due to corrosion.


Chemosphere ◽  
2021 ◽  
pp. 131563
Author(s):  
Laurens van Gelderen ◽  
Kristoffer Gulmark Poulsen ◽  
Jan H. Christensen ◽  
Grunde Jomaas

1998 ◽  
Vol 19 (1) ◽  
pp. 93-126 ◽  
Author(s):  
Trond Friisø ◽  
Yannick Schildberg ◽  
Odile Rambeau ◽  
Tore Tjomsland ◽  
Harald Førdedal ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2766 ◽  
Author(s):  
Jandyson Santos ◽  
Alberto Wisniewski Jr. ◽  
Marcos Eberlin ◽  
Wolfgang Schrader

Different ionization techniques based on different principles have been applied for the direct mass spectrometric (MS) analysis of crude oils providing composition profiles. Such profiles have been used to infer a number of crude oil properties. We have tested the ability of two major atmospheric pressure ionization techniques, electrospray ionization (ESI(±)) and atmospheric pressure photoionization (APPI(+)), in conjunction with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The ultrahigh resolution and accuracy measurements of FT-ICR MS allow for the correlation of mass spectrometric (MS) data with crude oil American Petroleum Institute (API) gravities, which is a major quality parameter used to guide crude oil refining, and represents a value of the density of a crude oil. The double bond equivalent (DBE) distribution as a function of the classes of constituents, as well as the carbon numbers as measured by the carbon number distributions, were examined to correlate the API gravities of heavy, medium, and light crude oils with molecular FT-ICR MS data. An aromaticity tendency was found to directly correlate the FT-ICR MS data with API gravities, regardless of the ionization technique used. This means that an analysis on the molecular level can explain the differences between a heavy and a light crude oil on the basis of the aromaticity of the compounds in different classes. This tendency of FT-ICR MS with all three techniques, namely, ESI(+), ESI(−), and APPI(+), indicates that the molecular composition of the constituents of crude oils is directly associated with API gravity.


Author(s):  
Jing Wen ◽  
Chun Li ◽  
Jinlai Feng ◽  
Chunlei Dai ◽  
Jungang Li ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document