Spatiotemporal Pattern of Soil Respiration of Terrestrial Ecosystems in China: The Development of a Geostatistical Model and Its Simulation

2010 ◽  
Vol 44 (16) ◽  
pp. 6074-6080 ◽  
Author(s):  
Guirui Yu ◽  
Zemei Zheng ◽  
Qiufeng Wang ◽  
Yuling Fu ◽  
Jie Zhuang ◽  
...  
2018 ◽  
Vol 10 (12) ◽  
pp. 4604 ◽  
Author(s):  
Jiqun Wen ◽  
Xiaowei Chuai ◽  
Shanchi Li ◽  
Song Song ◽  
Jiasheng Li ◽  
...  

Soil respiration (Rs) plays an important role in the carbon budget of terrestrial ecosystems. Quantifying the spatial and temporal variations in Rs in China at the regional scale helps improve our understanding of the variations in terrestrial carbon budgets that occur in response to global climate and environmental changes and potential future control measures. In this study, we used a regional-scale geostatistical model that incorporates gridded meteorological and pedologic data to evaluate the spatial Rs variations in China from 2000 to 2013. We analysed the relationship between Rs and environmental factors, and suggest management strategies that may help to keep the terrestrial carbon balance. The simulated results demonstrate that the mean annual Rs value over these 14 years was 422 g/m2/year, and the corresponding total amount was 4.01 Pg C/year. The Rs estimation displayed a clear spatial pattern and a slightly increasing trend. Further analysis also indicated that high Rs values may occur in areas that show a greater degree of synchronicity in the timing of their optimal temperature and moisture conditions. Moreover, cultivated vegetation exhibits higher Rs values than native vegetation. Finally, we suggest that specific conservation efforts should be focused on ecologically sensitive areas where the Rs values increase significantly.


2021 ◽  
Author(s):  
Franziska Lechleitner ◽  
Christopher C. Day ◽  
Oliver Kost ◽  
Micah Wilhelm ◽  
Negar Haghipour ◽  
...  

<p>Terrestrial ecosystems are intimately linked with the global climate system, but their response to ongoing and future anthropogenic climate change remains poorly understood. Reconstructing the response of terrestrial ecosystem processes over past periods of rapid and substantial climate change can serve as a tool to better constrain the sensitivity in the ecosystem-climate response.</p><p>In this talk, we will present a new reconstruction of soil respiration in the temperate region of Western Europe based on speleothem carbon isotopes (δ<sup>13</sup>C). Soil respiration remains poorly constrained over past climatic transitions, but is critical for understanding the global carbon cycle and its response to ongoing anthropogenic warming. Our study builds upon two decades of speleothem research in Western Europe, which has shown clear correlation between δ<sup>13</sup>C and regional temperature reconstructions during the last glacial and the deglaciation, with exceptional regional coherency in timing, amplitude, and absolute δ<sup>13</sup>C variation. By combining innovative multi-proxy geochemical analysis (δ<sup>13</sup>C, Ca isotopes, and radiocarbon) on three speleothems from Northern Spain, and quantitative forward modelling of processes in soil, karst, and cave, we show how deglacial variability in speleothem δ<sup>13</sup>C is best explained by increasing soil respiration. Our study is the first to quantify and remove the effects of prior calcite precipitation (PCP, using Ca isotopes) and bedrock dissolution (open vs closed system, using the radiocarbon reservoir effect) from the speleothem δ<sup>13</sup>C signal to derive changes in respired δ<sup>13</sup>C over time. Our approach allows us to estimate the temperature sensitivity of soil respiration (Q<sub>10</sub>), which is higher than current measurements, suggesting that part of the speleothem signal may be related to a change in the composition of the soil respired δ<sup>13</sup>C. This is likely related to changing substrate through increasing contribution from vegetation biomass with the onset of the Holocene.</p><p>These results highlight the exciting possibilities speleothems offer as a coupled archive for quantitative proxy-based reconstructions of climate and ecosystem conditions.</p>


2013 ◽  
Vol 59 (3) ◽  
Author(s):  
Tibor Priwitzer ◽  
Jozef Capuliak ◽  
Michal Bošela ◽  
Matej Schwarz

AbstractSoil respiration constitutes the second largest flux of carbon between terrestrial ecosystems and the atmosphere. This study provides the preliminary results of soil respiration (Rs) observations in three different stands, including two types of young forest stands (beech and spruce) and grassy clearings. The average values of Rs ranged from 0.92 to 15.20 μmol CO


2009 ◽  
Vol 6 (6) ◽  
pp. 11501-11520
Author(s):  
M. Bahn ◽  
M. Reichstein ◽  
E. A. Davidson ◽  
J. Grünzweig ◽  
M. Jung ◽  
...  

Abstract. Soil respiration (SR) constitutes the largest flux of CO2 from terrestrial ecosystems to the atmosphere. There still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 72 site-years for 58 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (SR MAT), irrespective of the type of ecosystem and biome. This convergence is to be theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q10). We further show that for seasonally dry sites where annual precipitation (P) is lower than potential evapotranspiration (PET), annual SR can be predicted from wet season SR MAT corrected for a factor related to P/PET. Our finding indicates that it is sufficient to measure SR MAT for obtaining a highly constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution and interannual variation of soil CO2 emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatio-temporal resolution of a major component of the global carbon cycle.


2014 ◽  
Vol 11 (6) ◽  
pp. 8749-8787 ◽  
Author(s):  
L. Keidel ◽  
C. Kammann ◽  
L. Grünhage ◽  
G. Moser ◽  
C. Müller

Abstract. Soil respiration of terrestrial ecosystems, a major component in the global carbon cycle is affected by elevated atmospheric CO2 concentrations. However, seasonal differences of feedback effects of elevated CO2 have rarely been studied. At the Giessen Free-Air CO2 Enrichment (GiFACE) site, the effects of +20% above ambient CO2 concentration (corresponds to conditions reached 2035–2045) have been investigated since 1998 in a temperate grassland ecosystem. We defined five distinct annual periods, with respect to management practices and phenological cycles. For a period of three years (2008–2010), weekly measurements of soil respiration were carried out with a survey chamber on vegetation-free subplots. The results revealed a pronounced and repeated increase of soil respiration during late autumn and winter dormancy. Increased CO2 losses during the autumn period (September–October) were 15.7% higher and during the winter period (November–March) were 17.4% higher compared to respiration from control plots. However, during spring time and summer, which are characterized by strong above- and below-ground plant growth, no significant change in soil respiration was observed at the FACE site under elevated CO2. This suggests (i) that soil respiration measurements, carried out only during the vegetative growth period under elevated CO2 may underestimate the true soil-respiratory CO2 loss (i.e. overestimate the C sequestered) and (ii) that additional C assimilated by plants during the growing period and transferred below-ground will quickly be lost via enhanced heterotrophic respiration outside the main vegetation period.


2015 ◽  
Author(s):  
Ricardo A Castro-Huerta ◽  
Fernando R Momo ◽  
Liliana B Falco ◽  
César A Di Ciocco ◽  
Carlos E Coviella

The processes involved in the flows of matter and energy of terrestrial ecosystems depends heavily on soil biological activity, the current conventional agricultural managements could alter the biological mechanisms involved in decomposition and nutrient cycling in agroecosystems. The aim of this study was to compare the activity levels and soil microbial biomass between different agricultural pampean soil uses and its relationship to carbon mineralization. 25 years of agricultural use were compared with 25 years of ecological reserve naturalized where each agroecosystem soil were collected at 61 - 125 - 183 - 236 - 302 - 368 - 431 - 488 days for measuring their moisture, organic matter, enzymatic activity, microbial biomass carbon, soil respiration, metabolic quotient, microbial quotient and carbon mineralization rate. The distance between agroecosystems is less than 800 m, thus assuming the same soil and climatic conditions. The data were evaluated by Friedman test finding significant differences in moisture, organic matter, enzymatic activity, soil respiration y microbial quotient (p< 0.01). Difference was also found in the microbial mineralization rate of carbon (p< 0.1).


2015 ◽  
Author(s):  
Ricardo A Castro-Huerta ◽  
Fernando R Momo ◽  
Liliana B Falco ◽  
César A Di Ciocco ◽  
Carlos E Coviella

The processes involved in the flows of matter and energy of terrestrial ecosystems depends heavily on soil biological activity, the current conventional agricultural managements could alter the biological mechanisms involved in decomposition and nutrient cycling in agroecosystems. The aim of this study was to compare the activity levels and soil microbial biomass between different agricultural pampean soil uses and its relationship to carbon mineralization. 25 years of agricultural use were compared with 25 years of ecological reserve naturalized where each agroecosystem soil were collected at 61 - 125 - 183 - 236 - 302 - 368 - 431 - 488 days for measuring their moisture, organic matter, enzymatic activity, microbial biomass carbon, soil respiration, metabolic quotient, microbial quotient and carbon mineralization rate. The distance between agroecosystems is less than 800 m, thus assuming the same soil and climatic conditions. The data were evaluated by Friedman test finding significant differences in moisture, organic matter, enzymatic activity, soil respiration y microbial quotient (p< 0.01). Difference was also found in the microbial mineralization rate of carbon (p< 0.1).


Sign in / Sign up

Export Citation Format

Share Document