plant decomposition
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

Web Ecology ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 109-136
Author(s):  
Dennis Castillo-Figueroa

Abstract. Along with habitat transformation, climate change has profound impacts on biodiversity and may alter ecosystem services on which human welfare depends. Many studies of the carbon cycle have focused on lowland tropical forests; however, upland forests have been less explored despite their pivotal role in carbon sequestration. Here, I synthesized the state of knowledge on the allocation of carbon in its different stocks (aboveground, belowground, and soil) as well as in its main fluxes (plant decomposition, respiration, and litterfall) in tropical upland ecosystems of the planet. In November 2020, a systematic review was carried out to identify references published from 2000 to 2020 through a combination of key terms in Google Scholar and Scopus databases, thus analysing bibliographic, geographical, methodological, and carbon cycling information of the global upland tropics (between 23.5∘ N–23.5∘ S). After analysing a total of 1967 references according to inclusion–exclusion criteria, 135 references published in the last 20 years were selected. Most of the studies were conducted in the tropical and subtropical moist broadleaf forest of South America. The main factors studied were elevation and forest type. Forest structure and soil variables were largely associated when studying carbon cycling in these ecosystems. Estimations of carbon stocks comprised three-fourths of the total studies, while the remaining fraction focused on carbon fluxes. Aboveground biomass and carbon in soils were highly investigated, while plant decomposition and respiration were the components that received the least attention. Even though in the last 20 years there was a slight increase in the number of studies on carbon cycle in tropical upland forests, I found bias associated with the biomes and ecoregions studied (especially in the Andes). Elevation was the main factor examined but other essential aspects such as the successional gradient, landscape management, diversity–productivity relationship, faunal and microbial effect, trophic cascades, and Gadgil effect require more attention. The inclusion of different litter species and origins (i.e. roots and stems) and theoretical frameworks including home-field advantage, substrate–matrix interaction, and phenology–substrate match may provide explanatory mechanisms to better understand litter decomposition over these forests. Despite respiration being a paramount link that is closely tied to above- and belowground compartment, this flux constitutes one of the important gaps to fulfil in future research. For a comprehensive understanding of the carbon cycle in upland forests, it is necessary to obtain information on its main fluxes and integrate them into climate change mitigation plans.



Limnologica ◽  
2021 ◽  
pp. 125939
Author(s):  
Shaojun Chen ◽  
Shimin Ding ◽  
Kun Tang ◽  
Yuanbo Liu


2019 ◽  
Vol 5 (2) ◽  
pp. 398 ◽  
Author(s):  
Leong Sing Wong ◽  
Shamini Somanathan

The objective of the paper is to compare and evaluate analytical and numerical solutions of one-dimensional consolidation of stabilized peat. The type of analytical method used to solve the problem is exact method by separation of variables and utilization of Fourier series. Plaxis 2D 8.2 Professional version software was used to find numerical solution to the problem by employing the finite element method. One-dimensional consolidation problem of stabilized peat was solved numerically and validated with the one solved analytically based on laboratory experimental results. From the results, it was discovered that the consolidation characteristics of stabilized peat evaluated numerically were found to have close approximation to those evaluated analytically. There is a novel value in developing an accurate numerical prediction for the vertical consolidation of stabilized peat considering the complexity of the soil treatment method. It must be noted that peat is highly problematic because it is produced from plant decomposition with extremely high organic matter.



2019 ◽  
Vol 70 (4) ◽  
pp. 554
Author(s):  
Shaojun Chen ◽  
Dong Wang

Aquatic invertebrates play an important role in plant decomposition. However, little information is available regarding the relative importance of micro-, meio- and macroinvertebrates in this process, particularly their role in the decomposition of buried organic matter. To investigate the role of these invertebrates in the decomposition of the aquatic macrophyte Vallisneria natans, leaves of V. natans were placed in litterbags with four different mesh sizes (0.025, 0.042, 0.5 and 5mm) and the bags were either incubated at the sediment–water (SW) interface or buried at a depth of 10cm (B10) for 60 days in Lake Nanhu, China, in July 2015. Increased mesh size significantly increased the loss of plant mass. The decomposition rate ranged from 0.0173 to 0.0467day–1 in the SW treatment, and from 0.0083 to 0.0280day–1 in the B10 treatment. Excluding microinvertebrates, burial significantly affected microbial respiration and invertebrate abundance. Increased mesh size increased invertebrate abundance and richness, but did not significantly affect microbial respiration in either treatment. The average contribution of micro-, meio- and macroinvertebrates and microbes to plant mass loss in the SW treatment was 23.1, 13.5, 7.0 and 56.5% respectively, compared with 19.7, 24.5, 12.3 and 43.5% respectively in the B10 treatment. The results of this study reveal the important but underestimated role of micro- and meioinvertebrates in macrophyte decomposition.



2016 ◽  
Vol 25 (2) ◽  
pp. 211-219 ◽  
Author(s):  
C. Grasset ◽  
L. H. Levrey ◽  
C. Delolme ◽  
F. Arthaud ◽  
G. Bornette


2016 ◽  
Vol 36 (19) ◽  
Author(s):  
洪志强 HONG Zhiqiang ◽  
熊瑛 XIONG Ying ◽  
李艳 LI Yan ◽  
崔骏 CUI Jun ◽  
刘钰钦 LIU Yuqin ◽  
...  




2014 ◽  
Author(s):  
Ricardo A Casttro-Huerta ◽  
Liliana B Falco ◽  
Rosana V Sandler ◽  
Carlos Coviella

Plant decomposition is dependant on the activity of the soil biota and its interactions with climate, soil properties, and plant residue inputs. This work assessed the roles of different groups of the soil biota on litter decomposition, and the way they are modulated by soil use. Litterbags of different mesh sizes were filled with standardized dried leaves and placed on the same soil different use intensities: Naturalized grasslands, recent agriculture, and intensive agriculture fields. During sixth months, litterbags of each mesh size were collected once a month per system with five replicates. The remaining mass was measured and decomposition rates calculated. Differences were found for the different biota groups, and they were dependant on soil use. Within systems, the results show that in the naturalized grasslands, the macrofauna had the highest contribution to decomposition. In the recent agricultural system it was the combined activity of the macro and mesofauna, and in the intensive agricultural use it was the mesofauna activity. These results underscore the relative importance and activity of the different groups of the edaphic biota and the effects of different soil uses on soil biota activity.



2014 ◽  
Author(s):  
Ricardo A Casttro-Huerta ◽  
Liliana B Falco ◽  
Rosana V Sandler ◽  
Carlos Coviella

Plant decomposition is dependant on the activity of the soil biota and its interactions with climate, soil properties, and plant residue inputs. This work assessed the roles of different groups of the soil biota on litter decomposition, and the way they are modulated by soil use. Litterbags of different mesh sizes were filled with standardized dried leaves and placed on the same soil different use intensities: Naturalized grasslands, recent agriculture, and intensive agriculture fields. During sixth months, litterbags of each mesh size were collected once a month per system with five replicates. The remaining mass was measured and decomposition rates calculated. Differences were found for the different biota groups, and they were dependant on soil use. Within systems, the results show that in the naturalized grasslands, the macrofauna had the highest contribution to decomposition. In the recent agricultural system it was the combined activity of the macro and mesofauna, and in the intensive agricultural use it was the mesofauna activity. These results underscore the relative importance and activity of the different groups of the edaphic biota and the effects of different soil uses on soil biota activity.



Sign in / Sign up

Export Citation Format

Share Document