Organic Matter—Solid Phase Interactions Are Critical for Predicting Arsenic Release and Plant Uptake in Bangladesh Paddy Soils

2011 ◽  
Vol 45 (14) ◽  
pp. 6080-6087 ◽  
Author(s):  
Paul N. Williams ◽  
Hao Zhang ◽  
William Davison ◽  
Andrew A. Meharg ◽  
Mahmud Hossain ◽  
...  

We present an overview of geochemical data from pore waters and solid phases that clarify earliest diagenetic processes affecting modern, shallow marine carbonate sediments. Acids produced by organic matter decomposition react rapidly with metastable carbonate minerals in pore waters to produce extensive syndepositional dissolution and recrystallization. Stoichiometric relations among pore water solutes suggest that dissolution is related to oxidation of H 2 S which can accumulate in these low-Fe sediments. Sulphide oxidation likely occurs by enhanced diffusion of O 2 mediated by sulphide-oxidizing bacteria which colonize oxic/anoxic interfaces invaginating these intensely bioturbated sediments. Buffering of pore water stable isotopic compositions towards values of bulk sediment and rapid 45 Ca exchange rates during sediment incubations demonstrate that carbonate recrystallization is a significant process. Comparison of average biogenic carbonate production rates with estimated rates of dissolution and recrystallization suggests that over half the gross production is dissolved and/or recrystallized. Thus isotopic and elemental composition of carbonate minerals can experience significant alteration during earliest burial driven by chemical exchange among carbonate minerals and decomposing organic matter. Temporal shifts in palaeo-ocean carbon isotope composition inferred from bulk-rocks may be seriously compromised by facies-dependent differences in dissolution and recrystallization rates.


Geoderma ◽  
2019 ◽  
Vol 338 ◽  
pp. 1-4 ◽  
Author(s):  
Wenbing Tan ◽  
Beidou Xi ◽  
Guoan Wang ◽  
Xiaosong He ◽  
Rutai Gao ◽  
...  

2021 ◽  
Author(s):  
Hans-Jörg Vogel ◽  
Mar­ia Balseiro-Romero ◽  
Philippe C. Baveye ◽  
Alexandra Kravchenko ◽  
Wilfred Otten ◽  
...  

<p>Soil structure, lately referred to as the ''architecture'' is a key to explain and understand all soil functions. The development of sophisticated imaging techniques over the last decades has led to significant progress in the description of this architecture and in particular of the geometry of the hierarchically-branched pore space in which transport of water, gases, solutes and particles occurs and where myriads of organisms live. Moreover, there are sophisticated tools available today to also visualize the spatial structure of the solid phase including mineral grains and organic matter. Hence, we do have access to virtually all components of soil architecture.</p><p>Unfortunately, it has so far proven very challenging to study the dynamics of soil architecture over time, which is of critical importance for soil as habitat and the turnover of organic matter. Several largely conflicting theories have been proposed to account for this dynamics, especially the formation of aggregates. We review these theories, and we propose a conceptual approach to reconcile them based on a consistent interpretation of experimental observations and by integrating known physical and biogeochemical processes. A key conclusion is that rather than concentrating on aggregate formation in the sense of how particles and organic matter reorganize to form aggregates as distinct functional units we should focus on biophysical processes that produce a porous, heterogeneous organo-mineral soil matrix that breaks into fragments of different size and stability when exposed to mechanical stress.  The unified vision we propose for soil architecture and the mechanisms that determine its temporal evolution, should pave the way towards a better understanding of soil processes and functions.</p>


Chemosphere ◽  
2020 ◽  
Vol 257 ◽  
pp. 127235
Author(s):  
Xin Wang ◽  
Yuanyuan Ji ◽  
Quan Shi ◽  
Yahe Zhang ◽  
Chen He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document