Plant Uptake of Cadmium-109 and Zinc-65 at Different Temperature and Organic Matter Levels

2001 ◽  
Vol 30 (3) ◽  
pp. 869-877 ◽  
Author(s):  
Å.R. Almås ◽  
B.R. Singh
Keyword(s):  
2001 ◽  
Vol 9 (2) ◽  
pp. 81-97 ◽  
Author(s):  
B R Singh ◽  
L Oste

The chemical behaviour of metals is primarily governed by their retention and release reactions of solute with the soil matrix. Liming increased the soil pH, resulting in increased adsorption of Zn, Cu, and Cd in soils, which in consequence decreased the concentration of easily soluble Cd fraction in the soils and the uptake of this metal by wheat (Triticum aestivum) and carrots (Daucus carota). Metal adsorption also depended on the presence of clay and organic matter, and thus the soils having highest amounts of clay (e.g., alum shale) and (or) organic matter (e.g., peat soil) showed the highest adsorption for these metals. Among the materials (Fe and Mn oxides and aluminosilicates) having high binding capacity for metals, the immobilizing capacity of birnessite (MnO2) was higher than that of other materials. Addition of synthetic zeolites significantly reduced the metal uptake by plants. Application of zeolite to a soil resulted in increased dissolved organic carbon (DOC) concentration in the leachate, which in consequence increased the leaching of Cd and Zn. Addition of beringite (an aluminosilicate) to a Zn-contaminated soil resulted in increased shoot length and leaf area of bean (Phaseolus vulgaris) and a significant reduction in Zn concentration in leaves (from 350 to 146 mg kg-1). Cadmium concentration in ryegrass and the concentrations of diethylenetriaminepentaacetic acid (DTPA)- extractable Cd, Cu, Ni, and Zn in the soil decreased significantly (P < 0.05) with increasing amounts of organic matter (peat soil and cow manure) added to soils. These effects were assumed to be related to immobilization of metals due to formation of insoluble metal--organic complexes and increased cation exchange capacity (CEC). An overview of the results showed that the products tested (lime, Fe/Mn-containing compounds, aluminosilicates, and organic matter products) can reduce the solubility and the plant uptake of metals but their immobilizing capacity is limited (sometimes through their side effects). Key words: aluminosilicates, contaminated soils, in situ immobilization, leaching, metal oxides, organic matter, plant uptake.


2011 ◽  
Vol 45 (14) ◽  
pp. 6080-6087 ◽  
Author(s):  
Paul N. Williams ◽  
Hao Zhang ◽  
William Davison ◽  
Andrew A. Meharg ◽  
Mahmud Hossain ◽  
...  

2012 ◽  
Author(s):  
Thomas Borch ◽  
Yitzhak Hadar ◽  
Tamara Polubesova

Many pharmaceutical compounds are active at very low doses, and a portion of them regularly enters municipal sewage systems and wastewater-treatment plants following use, where they often do not fully degrade. Two such compounds, CBZ and LTG, have been detected in wastewater effluents, surface waters, drinking water, and irrigation water, where they pose a risk to the environment and the food supply. These compounds are expected to interact with organic matter in the environment, but little is known about the effect of such interactions on their environmental fate and transport. The original objectives of our research, as defined in the approved proposal, were to: Determine the rates, mechanisms and products of photodegradation of LTG, CBZ and selected metabolites in waters exposed to near UV light, and the influence of DOM type and binding processes on photodegradation. Determine the potential and pathways for biodegradation of LTG, CBZ and selected metabolites using a white rot fungus (Pleurotusostreatus) and ADP, and reveal the effect of DOM complexation on these processes. Reveal the major mechanisms of binding of LTG, CBZ and selected metabolites to DOM and soil in the presence of DOM, and evaluate the effect of this binding on their photodegradation and/or biodegradation. We determined that LTG undergoes relatively slow photodegradation when exposed to UV light, and that pH affects each of LTG’s ability to absorb UV light, the efficiency of the resulting reaction, and the identities of LTG’sphotoproducts (t½ = 230 to 500 h during summer at latitude 40 °N). We observed that LTG’sphotodegradation is enhanced in the presence of DOM, and hypothesized that LTG undergoes direct reactions with DOM components through nucleophilic substitution reactions. In combination, these data suggest that LTG’s fate and transport in surface waters are controlled by environmental conditions that vary with time and location, potentially affecting the environment and irrigation waters. We determined that P. ostreatusgrows faster in a rich liquid medium (glucose peptone) than on a natural lignocellulosic substrate (cotton stalks) under SSF conditions, but that the overall CBZ removal rate was similar in both media. Different and more varied transformation products formed in the solid state culture, and we hypothesized that CBZ degradation would proceed further when P. ostreatusand the ᵉⁿᶻʸᵐᵃᵗⁱᶜ ᵖʳᵒᶠⁱˡᵉ ʷᵉʳᵉ ᵗᵘⁿᵉᵈ ᵗᵒ ˡⁱᵍⁿⁱⁿ ᵈᵉᵍʳᵃᵈᵃᵗⁱᵒⁿ. ᵂᵉ ᵒᵇˢᵉʳᵛᵉᵈ ¹⁴C⁻Cᴼ2 ʳᵉˡᵉᵃˢᵉ ʷʰᵉⁿ ¹⁴C⁻ᶜᵃʳᵇᵒⁿʸˡ⁻ labeled CBZ was used as the substrate in the solid state culture (17.4% of the initial radioactivity after 63 days of incubation), but could not conclude that mineralization had occurred. In comparison, we determined that LTG does not degrade in agricultural soils irrigated with treated wastewater, but that P. ostreatusremoves up to 70% of LTG in a glucose peptone medium. We detected various metabolites, including N-oxides and glycosides, but are still working to determine the degradation pathway. In combination, these data suggest that P. ostreatuscould be an innovative and effective tool for CBZ and LTG remediation in the environment and in wastewater used for irrigation. In batch experiments, we determined that the sorption of LTG, CBZ and selected metabolites to agricultural soils was governed mainly by SOM levels. In lysimeter experiments, we also observed LTG and CBZ accumulation in top soil layers enriched with organic matter. However, we detected CBZ and one of its metabolites in rain-fed wheat previously irrigated with treated wastewater, suggesting that their sorption was reversible, and indicating the potential for plant uptake and leaching. Finally, we used macroscale analyses (including adsorption/desorption trials and resin-based separations) with molecular- level characterization by FT-ICR MS to demonstrate the adsorptive fractionation of DOM from composted biosolids by mineral soil. This suggests that changes in soil and organic matter types will influence the extent of LTG and CBZ sorption to agricultural soils, as well as the potential for plant uptake and leaching.


2015 ◽  
Vol 8 ◽  
pp. ASWR.S19682 ◽  
Author(s):  
Eric P. Westra ◽  
Dale L. Shaner ◽  
Ken A. Barbarick ◽  
Raj Khosla

Sorption coefficients were evaluated for pyroxasulfone, s-metolachlor, and dimethenamid- p across 25 soil types with different chemical and physical properties to better understand how soil properties influence the binding of pyroxasulfone in different soils. Sorption coefficients were determined using a batch equilibrium method to evaluate relative differences in binding among the three herbicides. Based on water solubility values, we would have expected the relative order of binding to be dimethenamid- p (1450 mg L−1 at 20°C), s-metolachlor (530 mg L−1 at 20°C), and pyroxasulfone (3.49 mg L−1 at 20°C) in order of increasing binding. However, when sorption coefficients were calculated, we observed the order of pyroxasulfone = dimethenamid- p < s-metolachlor in the order of increasing binding. The average Kd(sorption coefficient) values were 1.7, 2.3, and 4.0 L kg−1 for pyroxasulfone, dimethenamid- p, and s-metolachlor, respectively. Although dimethenamid- p has water solubility values that are over 400 times greater than pyroxasulfone, there was no statistical difference in binding between pyroxasulfone and dimethenamid- p. s-Metolachlor binding was statistically greater than both pyroxasulfone and dimethenamid- p. Across all soil chemical and physical properties, sorption coefficients for all three herbicides were highly and statistically correlated to soil organic matter. Sand and silt were also statistically correlated to binding, although these correlations could be explained by the high correlation of organic matter to these properties. Evaluation of sorption coefficients indicates that pyroxasulfone is most prevalent in the soil solution where herbicides are available for plant uptake. Reduced soil binding and greater activity at the target site could contribute to comparable weed control efficacies of pyroxasulfone even when applied at lower use rates compared to either s-metolachlor or dimethenamid- p.


2019 ◽  
Vol 9 (19) ◽  
pp. 3998
Author(s):  
Gianniantonio Petruzzelli ◽  
Francesca Pedron

Tungsten is largely used in high-tech and military industries. Soils are increasingly enriched in this element, and its transfer in the food chain is an issue of great interest. This study evaluated the influence of soil characteristics on tungsten uptake by Zea mays grown on three soils, spiked with increasing tungsten concentrations. The soils, classified as Histosol, Vertisol, and Fluvisol, are characteristic of the Mediterranean area. The uptake of the element by Zea mays was strictly dependent on the soil characteristics. As the pH of soils increases, tungsten concentrations in the roots and shoots of the plants increased. Also, humic substances showed a great influence on tungsten uptake, which decreased with increasing organic matter of soils. Tungsten uptake by Zea mays can be described by a Freundlich-like equation. This soil-to-plant transfer model may be useful in promoting environmental regulations on the hazards of this element in the environment.


2017 ◽  
Vol 155 (7) ◽  
pp. 1023-1032 ◽  
Author(s):  
R. PADBHUSHAN ◽  
D. KUMAR

SUMMARYKnowledge of different fractions and availability of boron (B) is essential while studying the response of crops to B. Fractionation provides information about the chemistry of B and quantifies its bioavailability. Such information is potentially valuable for predicting bioavailability, B leaching, dynamics, transformation between chemical forms in soils and environmental impacts. Total B (T-B) is quantified into five fractions: readily soluble (Rs-B), specifically adsorbed (Spa-B), oxide bound (Ox-B), organically bound (Org-B) and residual B (Res-B). Of these, Rs-B is the fraction present in soil solution and adsorbed weakly by soil particles, and is most readily available for plant uptake. It accounts for 1–2% of T-B. The second most plant available form is Spa-B; it may be adsorbed onto clay surfaces or associated with organic matter (OM) in soil. The remaining fractions, Ox-B, Org-B and Res-B, are unavailable for plant uptake. The major portion (generally 87·4–99·7%) of T-B is composed of Res-B. Overall, the relative proportion of B in various fractions is in the order of Res B > Org-B > Spa-B > Rs-B > Ox-B. Several factors such as soil pH, soil OM, clay minerals, iron and aluminium oxides and calcium carbonate content may change the relative proportion of B in various fractions and the transformations among different soil B fractions. Some of the B fractions are correlated with others and exhibit responses in terms of plant growth. Non-specifically adsorbed (Nsa-B) and Spa-B are positively and significantly correlated to some sub-fractions of Ox-B, such as B occluded in manganese oxyhydroxides (Moh-B). The most readily available forms of B for plants are Nsa-B, Spa-B and Moh-B.


Sign in / Sign up

Export Citation Format

Share Document