Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

2013 ◽  
Vol 47 (22) ◽  
pp. 13141-13150 ◽  
Author(s):  
Arvind Murali Mohan ◽  
Angela Hartsock ◽  
Kyle J. Bibby ◽  
Richard W. Hammack ◽  
Radisav D. Vidic ◽  
...  
Chemosphere ◽  
2018 ◽  
Vol 212 ◽  
pp. 898-914 ◽  
Author(s):  
Ehsan Mohammad-Pajooh ◽  
Dirk Weichgrebe ◽  
Graham Cuff ◽  
Babak Mohamadpour Tosarkani ◽  
Karl-Heinz Rosenwinkel

2015 ◽  
Vol 12 (3) ◽  
pp. 286 ◽  
Author(s):  
Madeleine E. Payne ◽  
Heather F. Chapman ◽  
Janet Cumming ◽  
Frederic D. L. Leusch

Environmental context Hydraulic fracturing fluids, used in large volumes by the coal seam gas mining industry, are potentially present in the environment either in underground formations or in mine wastewater (produced water). Previous studies of the human health and environmental effects of this practice have been limited because they use only desktop methods and have not considered combined mixture toxicity. We use a novel in vitro method for toxicity assessment, and describe the toxicity of a hydraulic fracturing fluid on a human gastrointestinal cell line. Abstract Hydraulic fracturing fluids are chemical mixtures used to enhance oil and gas extraction. There are concerns that fracturing fluids are hazardous and that their release into the environment – by direct injection to coal and shale formations or as residue in produced water – may have effects on ecosystems, water quality and public health. This study aimed to characterise the acute cytotoxicity of a hydraulic fracturing fluid using a human gastrointestinal cell line and, using this data, contribute to the understanding of potential human health risks posed by coal seam gas (CSG) extraction in Queensland, Australia. Previous published research on the health effects of hydraulic fracturing fluids has been limited to desktop studies of individual chemicals. As such, this study is one of the first attempts to characterise the toxicity of a hydraulic fracturing mixture using laboratory methods. The fracturing fluid was determined to be cytotoxic, with half maximal inhibitory concentrations (IC50) values across mixture variations ranging between 25 and 51mM. When used by industry, these fracturing fluids would be at concentrations of over 200mM before injection into the coal seam. A 5-fold dilution would be sufficient to reduce the toxicity of the fluids to below the detection limit of the assay. It is unlikely that human exposure would occur at these high (‘before use’) concentrations and likely that the fluids would be diluted during use. Thus, it can be inferred that the level of acute risk to human health associated with the use of these fracturing fluids is low. However, a thorough exposure assessment and additional chronic and targeted toxicity assessments are required to conclusively determine human health risks.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. A13-A16 ◽  
Author(s):  
Nigel Rees ◽  
Simon Carter ◽  
Graham Heinson ◽  
Lars Krieger

The magnetotelluric (MT) method is introduced as a geophysical tool to monitor hydraulic fracturing of shale gas reservoirs and to help constrain how injected fluids propagate. The MT method measures the electrical resistivity of earth, which is altered by the injection of fracturing fluids. The degree to which these changes are measurable at the surface is determined by several factors, such as the conductivity and quantity of the fluid injected, the depth of the target interval, the existing pore fluid salinity, and a range of formation properties, such as porosity and permeability. From an MT monitoring survey of a shale gas hydraulic fracture in the Cooper Basin, South Australia, we have found temporal and spatial changes in MT responses above measurement error. Smooth inversions are used to compare the resistivity structure before and during hydraulic fracturing, with results showing increases in bulk conductivity of 20%–40% at a depth range coinciding with the horizontal fracture. Comparisons with microseismic data lead to the conclusion that these increases in bulk conductivity are caused by a combination of the injected fluid permeability and an increase in wider scale in situ fluid permeability.


Sign in / Sign up

Export Citation Format

Share Document