Monitoring shale gas resources in the Cooper Basin using magnetotellurics

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. A13-A16 ◽  
Author(s):  
Nigel Rees ◽  
Simon Carter ◽  
Graham Heinson ◽  
Lars Krieger

The magnetotelluric (MT) method is introduced as a geophysical tool to monitor hydraulic fracturing of shale gas reservoirs and to help constrain how injected fluids propagate. The MT method measures the electrical resistivity of earth, which is altered by the injection of fracturing fluids. The degree to which these changes are measurable at the surface is determined by several factors, such as the conductivity and quantity of the fluid injected, the depth of the target interval, the existing pore fluid salinity, and a range of formation properties, such as porosity and permeability. From an MT monitoring survey of a shale gas hydraulic fracture in the Cooper Basin, South Australia, we have found temporal and spatial changes in MT responses above measurement error. Smooth inversions are used to compare the resistivity structure before and during hydraulic fracturing, with results showing increases in bulk conductivity of 20%–40% at a depth range coinciding with the horizontal fracture. Comparisons with microseismic data lead to the conclusion that these increases in bulk conductivity are caused by a combination of the injected fluid permeability and an increase in wider scale in situ fluid permeability.

2013 ◽  
Author(s):  
Michael Paul Scott ◽  
Tim Stephens ◽  
Richard Durant ◽  
James McGowen ◽  
Warwick Thom ◽  
...  

2021 ◽  
Vol 73 (08) ◽  
pp. 67-68
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201694, “Interwell Fracturing Interference Evaluation of Multiwell Pads in Shale Gas Reservoirs: A Case Study in WY Basin,” by Youwei He, SPE, Jianchun Guo, SPE, and Yong Tang, Southwest Petroleum University, et al., prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. The paper aims to determine the mechanisms of fracturing interference for multiwell pads in shale gas reservoirs and evaluate the effect of interwell fracturing interference on production. Field data of 56 shale gas wells in the WY Basin are applied to calculate the ratio of affected wells to newly fractured wells and understand its influence on gas production. The main controlling factors of fracturing interference are determined, and the interwell fracturing interacting types are presented. Production recovery potential for affected wells is analyzed, and suggestions for mitigating fracturing interference are proposed. Interwell Fracturing Interference Evaluation The WY shale play is in the southwest region of the Sichuan Basin, where shale gas reserves in the Wufeng-Longmaxi formation are estimated to be the highest in China. The reservoir has produced hydrocarbons since 2016. Infill well drilling and massive hydraulic fracturing operations have been applied in the basin. Each well pad usually is composed of six to eight multifractured horizontal wells (MFHWs). Well spacing within one pad, or the distance between adjacent well pads, is so small that fracture interference can occur easily between infill wells and parent wells. Fig. 1 shows the number of wells affected by in-fill well fracturing from 2016 to 2019 in the basin. As the number of newly drilled wells increased between 2017 and 2019, the number of wells affected by hydraulic fracturing has greatly increased. The number of wells experiencing fracturing interaction has reached 65 in the last 4 years at the time of writing.


SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1839-1855 ◽  
Author(s):  
Bing Hou ◽  
Zhi Chang ◽  
Weineng Fu ◽  
Yeerfulati Muhadasi ◽  
Mian Chen

Summary Deep shale gas reservoirs are characterized by high in-situ stresses, a high horizontal-stress difference (12 MPa), development of bedding seams and natural fractures, and stronger plasticity than shallow shale. All of these factors hinder the extension of hydraulic fractures and the formation of complex fracture networks. Conventional hydraulic-fracturing techniques (that use a single fluid, such as guar fluid or slickwater) do not account for the initiation and propagation of primary fractures and the formation of secondary fractures induced by the primary fractures. For this reason, we proposed an alternating-fluid-injection hydraulic-fracturing treatment. True triaxial hydraulic-fracturing tests were conducted on shale outcrop specimens excavated from the Shallow Silurian Longmaxi Formation to study the initiation and propagation of hydraulic fractures while the specimens were subjected to an alternating fluid injection with guar fluid and slickwater. The initiation and propagation of fractures in the specimens were monitored using an acoustic-emission (AE) system connected to a visual display. The results revealed that the guar fluid and slickwater each played a different role in hydraulic fracturing. At a high in-situ stress difference, the guar fluid tended to open the transverse fractures, whereas the slickwater tended to activate the bedding planes as a result of the temporary blocking effect of the guar fluid. On the basis of the development of fractures around the initiation point, the initiation patterns were classified into three categories: (1) transverse-fracture initiation, (2) bedding-seam initiation, and (3) natural-fracture initiation. Each of these fracture-initiation patterns had a different propagation mode. The alternating-fluid-injection treatment exploited the advantages of the two fracturing fluids to form a large complex fracture network in deep shale gas reservoirs; therefore, we concluded that this method is an efficient way to enhance the stimulated reservoir volume compared with conventional hydraulic-fracturing technologies.


2013 ◽  
Vol 107 ◽  
pp. 31-44 ◽  
Author(s):  
Jonny Rutqvist ◽  
Antonio P. Rinaldi ◽  
Frédéric Cappa ◽  
George J. Moridis

2002 ◽  
Vol 42 (1) ◽  
pp. 65 ◽  
Author(s):  
P.C. Strong ◽  
G.R. Wood ◽  
S.C. Lang ◽  
A. Jollands ◽  
E. Karalaus ◽  
...  

Fluvial-lacustrine reservoirs in coal-bearing strata provide a particular challenge for reservoir characterisation because of the dominance of coal on the seismic signature and the highly variable reservoir geometry, quality and stratigraphic connectivity. Geological models for the fluvial gas reservoirs in the Permian Patchawarra Formation of the Cooper Basin are critical to minimise the perceived reservoir risks of these relatively deep targets. This can be achieved by applying high-resolution sequence stratigraphic concepts and finescaled seismic mapping. The workflow begins with building a robust regional chronostratigraphic framework, focussing on widespread lacustrine flooding surfaces and unconformities, tied to seismic scale reflectors. This framework is refined by identification of local surfaces that divide the Patchawarra Formation into high-resolution genetic units. A log facies scheme is established based on wireline log character, and calibrated to cores and cuttings, supported by analogue studies, such as the modern Ob River system in Western Siberia. Stacking patterns within each genetic unit are used to determine depositional systems tracts, which can have important reservoir connectivity implications. This leads to the generation of log signature maps for each interval, from which palaeogeographic reconstructions are generated. These maps are drawn with the guiding control of syn-depositional structural features and net/ gross trends. Estimates of fluvial channel belt widths are based on modern and ancient analogues. The resultant palaeogeography maps are used with structural and production data to refine play concepts, as a predictive tool to locate exploration and development drilling opportunities, to assess volumetrics, and to improve drainage efficiency and recovery during production of hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document